高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向业务可达性的广域工业互联网调度算法研究

胡致远 胡文前 李香 马志 王文莉 王旭东 李春阳 黄天聪

胡致远, 胡文前, 李香, 马志, 王文莉, 王旭东, 李春阳, 黄天聪. 面向业务可达性的广域工业互联网调度算法研究[J]. 电子与信息学报, 2021, 43(9): 2608-2616. doi: 10.11999/JEIT200583
引用本文: 胡致远, 胡文前, 李香, 马志, 王文莉, 王旭东, 李春阳, 黄天聪. 面向业务可达性的广域工业互联网调度算法研究[J]. 电子与信息学报, 2021, 43(9): 2608-2616. doi: 10.11999/JEIT200583
Zhiyuan HU, Wenqian HU, Xiang LI, Zhi MA, Wenli WANG, Xudong WANG, Chunyang LI, Tiancong HUANG. Research on Wide Area Industrial Internet Scheduling Algorithm Based on Service Reachability[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2608-2616. doi: 10.11999/JEIT200583
Citation: Zhiyuan HU, Wenqian HU, Xiang LI, Zhi MA, Wenli WANG, Xudong WANG, Chunyang LI, Tiancong HUANG. Research on Wide Area Industrial Internet Scheduling Algorithm Based on Service Reachability[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2608-2616. doi: 10.11999/JEIT200583

面向业务可达性的广域工业互联网调度算法研究

doi: 10.11999/JEIT200583
基金项目: 国家科技重大专项(2017ZX01030204),重庆市基础研究与前沿探索(cstc2015jcyjA40021)
详细信息
    作者简介:

    胡致远:男,1965年生,博士,教授,研究方向为智能电网、无线接入网

    胡文前:男,1996年生,硕士生,研究方向为智能电网通信网

    李香:女,1997年生,硕士生,研究方向为智能电网通信网

    马志:男,1996年生,硕士,研究方向为智能电网通信网

    王文莉:女,1992年生,硕士,研究方向为无线接入网

    王旭东:男,1996年生,硕士,研究方向为智能电网通信网

    李春阳:男,1995年生,硕士,研究方向为智能电网通信网

    黄天聪:男,1971年生,博士,副研究员,研究方向为新一代宽带无线移动通信技术

    通讯作者:

    胡致远 hzy@cqu.edu.cn

  • 中图分类号: TN915

Research on Wide Area Industrial Internet Scheduling Algorithm Based on Service Reachability

Funds: The National Science and Technology Major Projects (2017ZX01030204), Chongqing Basic Research and Frontier Exploration (cstc2015jcyjA40021)
  • 摘要: 工业互联网业务呈现出小规模、确定性的特征,通常运行在大规模、异构的网络环境中,业务的调度与功能链的编排难以与异构承载网资源匹配。基于此该文提出非工作保持型的多节点联合调度模型,首先采用全路径时间协调算法,将功能链从空间维度的拓扑编排扩展至时空维度;其次,针对网络节点中的同步调度问题,提出了基于紧急度的流调度算法来平滑时延抖动,进一步,将时间触发调度延拓到大规模、异构且非同步的承载网中,提出了虚拟到达队列编排算法,利用业务同步机制替代时间同步,保障了业务确定的可达性需求。仿真实验表明该文所提算法可提升业务的可达性,保障其满足及时性、准时性、协同性需求。
  • 图  1  未来工业互联网网络架构

    图  2  调度模型对比

    图  3  全路径时间协调示意图

    图  4  节点业务流调度示意图

    图  5  业务到达时序逻辑图

    图  6  虚拟到达队列编排模型仿真拓扑

    图  7  UIS仿真拓扑图

    图  8  DE1_1流时延及抖动图

    图  9  TAS与UIS算法抖动性能对比图

    表  1  工作模式对比

    性能WorkconservingNon-workconserving
    触发方式事件触发时间触发
    链路利用率
    平均时延
    时延抖动
    速率控制
    下载: 导出CSV

    表  2  全路径时间协调算法伪代码

     全路径时间协调算法伪代码
     (1) IF 不需要应用层编排 THEN
     (2) WHILE ${\boldsymbol{S}}$$\ne \varnothing$
     (3) REMOVE P FROM S
     (4) Solve LP(P)
     (5) IF LP(P)具有可行解 THEN
     (6) ${{\boldsymbol{X}}^*}$成为LP(P)的最优基础解
     (7) IF${{\boldsymbol{X}}^*}$满足约束条件 THEN
     (8) IF $\cos t({X^*}) < F$ THEN
     (9) 保留${{\boldsymbol{X}}^*}$,更新$F$
     (10) ELSE
     (11) IF $\cos t({\rm{LP} }(P)) \ge F$ THEN
     (12) 进行剪枝
     (13) ELSE 划分子问题
     (14) ELSE
     (15) IF Q.count > 1 THEN
     (16) 对Q快速排序
     (17) ELSE Return
     (18) FOR i 0 to Q.count – 1 BY 1 DO
     (19) $T_{Ai}^{ {j_{{\rm{con}}} } } = {T_{Pi} } + {\rm{Random}}$, $T_E^{{P_i}} = T_A^{{P_i}} - {T_{Pi}}$
     (20) END
    下载: 导出CSV

    表  3  实验结果1

    P 虚拟到达(ms) 观测窗口(ms) 误差(ms)
    P1 12.384206 13.021408 0.637202
    P2 11.253912 11.687653 0.433741
    P3 10.897265 11.327356 0.430091
    下载: 导出CSV

    表  4  实验结果2

    P 虚拟到达(ms) 观测窗口(ms) 误差(ms)
    P1 15.725614 27.684932 11.959318
    P2 11.687306 24.394108 12.706802
    P3 10.433697 25.870495 15.436798
    下载: 导出CSV

    表  5  流量参数

    DEBG
    流量类型CBRVBR
    流速率(Gbps)1.51.2~2.8
    数据包载荷(byte)15001000~2000
    发送间隔(ns)80005500~7500
    下载: 导出CSV

    表  6  SP算法实验结果

    最小时延(ns) 最大时延(ns) 抖动(ns)
    DE1_1 5999 41599 35600
    DE2_1 4799 24899 20100
    DE2_2 4799 26233 21234
    DE3_1 4799 33899 29100
    DE3_2 4799 35233 30434
    BG 17999 1829770 1811771
    下载: 导出CSV

    表  7  UIS算法实验结果

    最小时延(ns) 最大时延(ns) 抖动(ns)
    DE1_1 42299 43299 1000
    DE2_1 26299 27299 1000
    DE2_2 27633 28633 1000
    DE3_1 36299 37299 1000
    DE3_2 37633 38633 1000
    BG 72568 1829770 1757202
    下载: 导出CSV
  • [1] 王俊文. 未来工业互联网发展的技术需求[J]. 电信科学, 2019, 35(8): 26–38. doi: 10.11959/j.issn.1000-0801.2019201

    WANG Junwen. Technical requirement of future industrial internet[J]. Telecommunications Science, 2019, 35(8): 26–38. doi: 10.11959/j.issn.1000-0801.2019201
    [2] 黄韬, 汪硕, 黄玉栋, 等. 确定性网络研究综述[J]. 通信学报, 2019, 40(6): 160–176. doi: 10.11959/j.issn.1000-436x.2019119

    HUANG Tao, WANG Shuo, HUANG Yudong, et al. Survey of the deterministic network[J]. Journal on Communications, 2019, 40(6): 160–176. doi: 10.11959/j.issn.1000-436x.2019119
    [3] NASRALLAH A, THYAGATURU A S, ALHARBI Z, et al. Ultra-low latency (ULL) networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 88–145. doi: 10.1109/COMST.2018.2869350
    [4] CAO Jiuyue, ZHANG Yan, AN Wei, et al. VNF-FG design and VNF placement for 5G mobile networks[J]. Science China Information Sciences, 2017, 60(4): 040302. doi: 10.1007/s11432-016-9031-x
    [5] YE Zilong, CAO Xiaojun, WANG Jianpin, et al. Joint topology design and mapping of service function chains for efficient, scalable, and reliable network functions virtualization[J]. IEEE Network, 2016, 30(3): 81–87. doi: 10.1109/MNET.2016.7474348
    [6] BECK M T, BOTERO J F, and SAMELIN K. Resilient allocation of service function chains[C]. 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks, Palo Alto, USA, 2016: 128–133. doi: 10.1109/NFV-SDN.2016.7919487.
    [7] MAXIM D and SONG Yeqiong. Delay analysis of AVB traffic in time-sensitive networks (TSN)[C]. The 25th International Conference on Real-Time Networks and Systems, Grenoble, France, 2017: 18–27. doi: 10.1145/3139258.3139283.
    [8] CAO Jingyue, CUIJPERS P J L, BRIL R J, et al. Tight worst-case response-time analysis for Ethernet AVB using eligible intervals[C]. 2016 IEEE World Conference on Factory Communication Systems, Aveiro, Portugal, 2016: 1–8. doi: 10.1109/WFCS.2016.7496507.
    [9] MOHAMMADPOUR E, STAI E, MOHIUDDIN M, et al. Latency and backlog bounds in time-sensitive networking with credit based shapers and asynchronous traffic shaping[C]. The 30th International Teletraffic Congress, Vienna, Austria, 2018: 1–6. doi: 10.1109/ITC30.2018.10053.
    [10] THIELE D, ERNST R, and DIEMER J. Formal worst-case timing analysis of Ethernet TSN's time-aware and peristaltic shapers[C]. Proceedings of 2015 IEEE Vehicular Networking Conference, Kyoto, Japan, 2015: 251–258. doi: 10.1109/VNC.2015.7385584.
    [11] CRACIUNAS S S, OLIVER R S, CHMELÍK M, et al. Scheduling real-time communication in IEEE 802.1Qbv time sensitive networks[C]. The 24th International Conference on Real-Time Networks and Systems, Brest, France, 2016: 183–192. doi: 10.1145/2997465.2997470.
    [12] NAYAK N G, DÜRR F, and ROTHERMEL K. Incremental flow scheduling and routing in time-sensitive software-defined networks[J]. IEEE Transactions on Industrial Informatics, 2018, 14(5): 2066–2075. doi: 10.1109/TII.2017.2782235
    [13] NOVAK A, SUCHA P, and HANZALEK Z. Efficient algorithm for jitter minimization in time-triggered periodic mixed-criticality message scheduling problem[C]. The 24th International Conference on Real-Time Networks and Systems, Brest, France, 2016: 23–31. doi: 10.1145/2997465.2997481.
    [14] WAN Tao and ASHWOOD-SMITH P. A performance study of CPRI over Ethernet with IEEE 802.1Qbu and 802.1Qbv enhancements[C]. 2015 IEEE Global Communications Conference, San Diego, USA, 2015: 1–6. doi: 10.1109/GLOCOM.2015.7417599.
    [15] CHITIMALLA D, KONDEPU K, VALCARENGHI L, et al. 5G fronthaul-latency and jitter studies of CPRI over Ethernet[J]. Journal of Optical Communications and Networking, 2017, 9(2): 172–182. doi: 10.1364/JOCN.9.000172
    [16] LIEBEHERR J and YILMAZ E. Workconserving vs. non-workconserving packet scheduling: An issue revisited[C]. 1999 Seventh International Workshop on Quality of Service. IWQoS'99. (Cat. No.98EX354), London, UK, 1999: 248–256. doi: 10.1109/IWQOS.1999.766500.
    [17] HAN K E, SONG J, KIM D U, et al. Grant-aware scheduling algorithm for VOQ-based input-buffered packet switches[J]. ETRI Journal, 2018, 40(3): 337–346. doi: 10.4218/etrij.2017-0057
    [18] MEI Lichun, QIAO Lufeng, CHEN Qinghua, et al. A Packet Dispatching Scheme with Load Balancing Based on iSLIP for Satellite Onboard CIOQ Switches[M]. LIANG Qilian, MU Jiasong, WANG Wei, et al. Communications, Signal Processing, and Systems. Singapore: Springer, 2016: 77–85. doi: 10.1007/978-981-10-3229-5_9.
    [19] AKGÜNGÖR A P and KORKMAZ E. Investigating parameter interactions with the factorial design method: Webster's optimal cycle length model[J]. Tehnički Vjesnik, 2018, 25(S2): 391–395. doi: 10.17559/TV-20170908185847
    [20] KOLPAKOV R M and POSYPKIN M A. On the best choice of a branching variable in the subset sum problem[J]. Discrete Mathematics and Applications, 2018, 28(1): 29–34. doi: 10.1515/dma-2018-0004
    [21] MEDHAT A M, CARELLA G, LÜCK C, et al. Near optimal service function path instantiation in a multi-datacenter environment[C]. The 11th International Conference on Network and Service Management, Barcelona, Spain, 2015: 336–341. doi: 10.1109/CNSM.2015.7367379.
    [22] DIEMER J, THIELE D, and ERNST R. Formal worst-case timing analysis of Ethernet topologies with strict-priority and AVB switching[C]. The 7th IEEE International Symposium on Industrial Embedded Systems, Karlsruhe, Germany, 2012: 1–10. doi: 10.1109/SIES.2012.6356564.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  908
  • HTML全文浏览量:  655
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-16
  • 修回日期:  2021-07-05
  • 网络出版日期:  2021-07-16
  • 刊出日期:  2021-09-16

目录

    /

    返回文章
    返回