高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MEMS的距离自适应型非接触静电仪

闻小龙 杨鹏飞 储昭志 彭春荣 刘宇涛 吴双

闻小龙, 杨鹏飞, 储昭志, 彭春荣, 刘宇涛, 吴双. 基于MEMS的距离自适应型非接触静电仪[J]. 电子与信息学报, 2021, 43(10): 3068-3074. doi: 10.11999/JEIT200571
引用本文: 闻小龙, 杨鹏飞, 储昭志, 彭春荣, 刘宇涛, 吴双. 基于MEMS的距离自适应型非接触静电仪[J]. 电子与信息学报, 2021, 43(10): 3068-3074. doi: 10.11999/JEIT200571
Xiaolong WEN, Pengfei YANG, Zhaozhi CHU, Chunrong PENG, Yutao LIU, Shuang WU. A Daptive-distance Noncontact Electrostatic Meter Based on MEMS Technology[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3068-3074. doi: 10.11999/JEIT200571
Citation: Xiaolong WEN, Pengfei YANG, Zhaozhi CHU, Chunrong PENG, Yutao LIU, Shuang WU. A Daptive-distance Noncontact Electrostatic Meter Based on MEMS Technology[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3068-3074. doi: 10.11999/JEIT200571

基于MEMS的距离自适应型非接触静电仪

doi: 10.11999/JEIT200571
基金项目: 国家重点研发计划(2018YFF01010800),国家自然科学基金(62031025),中央高校基本科研业务费专项资金(FRF-TP-19-045A2, FRF-BD-19-017A, FRF-BD-20-12A)
详细信息
    作者简介:

    闻小龙:男,1988年生,讲师,研究方向为微型传感器及系统、电场传感器、磁场传感器

    杨鹏飞:男,1986年生,讲师,研究方向为微传感器与微系统、新型电学量传感器、低频电场探测

    储昭志:男,1990年生,助理研究员,研究方向为新型电场传感器及制备技术

    彭春荣:男,1979年生,研究员,研究方向为微传感器与微系统、新型电学量传感器及应用

    通讯作者:

    彭春荣 crpeng@mail.ie.ac.cn

  • 中图分类号: TP212.1

A Daptive-distance Noncontact Electrostatic Meter Based on MEMS Technology

Funds: The National Key R&D Program of China (2018YFF01010800), The National Natural Science Foundation of China(62031025), The Fundamental Research Funds for the Central Universities (FRF-TP-19-045A2, FRF-BD-19-017A, FRF-BD-20-12A)
  • 摘要: 静电场测量是检测物体是否携带过量静电最直接的手段,对于静电防护具有重要意义。传统的静电仪主要依赖固定距离测量,在被测物难以维持静止或不容易靠近时,距离改变引起灵敏度变化,造成测量误差。该文基于微机电系统电场传感器,提出一种可根据测试距离自适应调整灵敏度的静电测量思路:通过超声波模块测量被测物的距离,然后通过单片机查找对应的灵敏度系数,结合电场测试结果计算被测电压。针对研制的静电仪,该文提出基于实验室标定及现场标定相结合的校准方法,搭建了动态灵敏度标定系统,计算出不同测试距离、不同被测物尺寸的传感器灵敏度系数对应关系。与定距测量的传统静电仪相比,该文通过灵敏度动态标定,实现了更精确的非接触表面静电压测量;采用微机电系统电场敏感元件,具有体积小、功耗低、易集成、可批量化制备等优点,封装后无裸露可动部件,可靠性高。经第三方计量检测,在不同测试距离下的平均误差为–2.98%。
  • 图  1  MEMS电场敏感芯片结构示意图

    图  2  敏感芯片谐振动力学模型

    图  3  MEMS敏感芯片工艺流程示意图

    图  4  敏感芯片封装结构原理图

    图  5  静电仪电路功能框图

    图  6  I-V转换电路原理图

    图  7  固定距离下静电仪标定结果

    图  8  不同尺寸、不同距离的灵敏度系数标定结果

    表  1  静电仪第三方校准结果

    测试距离2 cm5 cm10 cm
    标准值(kV)示值(kV)相对误差(%)示值(kV)相对误差(%)示值(kV)相对误差(%)
    0.500.51+2.000.49–2.000.500.00
    1.001.03+3.000.97–3.000.99–1.00
    2.002.09+4.501.95–2.502.000.00
    2.502.59+3.602.43–2.802.48–0.80
    3.003.10+3.332.93–2.332.99–0.33
    4.004.15+3.753.94–1.503.99–0.25
    5.005.36+7.204.93–1.404.98–0.40
    –0.50–0.55–10.00–0.53–6.00–0.53–6.00
    –1.00–1.09–9.00–1.07–7.00–1.06–6.00
    –2.00–2.20–10.00–2.15–7.50–2.15–7.50
    –2.50–2.58–3.20–2.67–6.80–2.61–4.40
    –3.00–3.26–8.67–3.22–7.33–3.09–3.00
    –4.00–4.29–7.25–4.28–7.00–4.09–2.25
    –5.00–5.41–8.20–5.32–6.40–5.03–0.60
    下载: 导出CSV
  • [1] 张成铭, 徐晓英, 舒晓榕, 等. 静电放电对PCB轨线耦合的实验及仿真研究[J]. 电子测量与仪器学报, 2020, 34(5): 103–111. doi: 10.13382/j.jemi.B1902854

    ZHANG Chengming, XU Xiaoying, SHU Xiaorong, et al. Experimental and simulation study on the coupling with the PCB trace by electrostatic discharge[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(5): 103–111. doi: 10.13382/j.jemi.B1902854
    [2] 李亮亮, 赵清山, 李义鹏, 等. 电导率对成品油静电特性影响试验研究[J]. 工业安全与环保, 2018, 44(7): 9–12. doi: 10.3969/j.issn.1001-425X.2018.07.003

    LI Liangliang, ZHAO Qingshan, LI Yipeng, et al. Experimental study on the effect of conductivity on the electrostatic characteristics of petroleum products[J]. Industrial Safety and Environmental Protection, 2018, 44(7): 9–12. doi: 10.3969/j.issn.1001-425X.2018.07.003
    [3] 魏宏安, 吴小清, 张昂. 基于能量误差的人体有限元模型网格剖分优化研究[J]. 电子与信息学报, 2020, 42(11): 2615–2620. doi: 10.11999/JEIT190765

    WEI Hong’an, WU Xiaoqing, and ZHANG Ang. Research on mesh generation optimization of finite element model of human body based on energy error[J]. Journal of Electronics &Information Technology, 2020, 42(11): 2615–2620. doi: 10.11999/JEIT190765
    [4] 季启政, 刘志宏, 张书锋. 航天器电子产品静电防护管理初探[J]. 航天工业管理, 2011(3): 29–32. doi: 10.3969/j.issn.1004-7980.2011.03.007

    JI Qizheng, LIU Zhihong, and ZHANG Shufeng. The primary research on the ESD protection management system of spacecraft electronic devices[J]. Aerospace Industry Management, 2011(3): 29–32. doi: 10.3969/j.issn.1004-7980.2011.03.007
    [5] SIMICIC M, ASHIF N R, HELLINGS G, et al. Electrostatic discharge robustness of amorphous indium-gallium-zinc-oxide thin-film transistors[J]. Microelectronics Reliability, 2020, 108: 113632. doi: 10.1016/j.microrel.2020.113632
    [6] YONG Shaohui, HOSSEINBEIG A, YANG Suyu, et al. Noncontact human body voltage measurement using Microsoft Kinect and field mill for ESD applications[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(3): 842–851. doi: 10.1109/TEMC.2018.2836869
    [7] 刘辉, 李川, 卢红彬. 一种人体静电测量系统的设计方法与实现[C]. 2012年全国军事微波会议、2012年全国电磁兼容学术会议、2012年第九届电磁技术学术年会论文集, 桂林, 中国, 2012: 290–293.

    LIU Hui, LI Chuan, and LU Hongbin. New design method and implementation of measurement system to body electrostatic[C]. 2012 National Military Microwave Conference, 2012 National Electromagnetic Compatibility Academic Conference, 2012 Electromagnetic Technology Academic Annual Conference, Guilin, China, 2012: 290–293.
    [8] TANT P, BOLSENS B, SELS T, et al. Design and application of a field mill as a high-voltage DC meter[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(4): 1459–1464. doi: 10.1109/TIM.2007.900157
    [9] AGARWAL A and BHATTACHARYA S. An approach to study the atmospheric electric field using EFM system[C]. Futuristic Trends in Engineering, Science, Humanities, and Technology, Madhya Pradesh, India, 2016: 153–156.
    [10] NORAS M A and PANDEY A. Surface charge density measurements[J]. IEEE Industry Applications Magazine, 2010, 16(4): 41–47. doi: 10.1109/MIAS.2010.936971
    [11] FATIHOU A, DASCALESCU L, ZOUZOU N, et al. Measurement of surface potential of non-uniformly charged insulating materials using a non-contact electrostatic voltmeter[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 2377–2384. doi: 10.1109/TDEI.2016.7556516
    [12] 王德才. 电线电压与电流非接触检测技术研究[D]. [博士论文], 重庆大学, 2018.

    WANG Decai. Study on non-contact detecting technology for electric power line-voltage and current[D]. [Ph. D. dissertation], Chongqing University, 2018.
    [13] 凌必赟, 彭春荣, 任仁, 等. 低轴间耦合的MEMS三维电场传感器[J]. 电子与信息学报, 2018, 40(8): 1934–1940. doi: 10.11999/JEIT171188

    LING Biyun, PENG Chunrong, REN Ren, et al. MEMS-based three-dimensional electric field sensor with low cross-axis coupling interference[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1934–1940. doi: 10.11999/JEIT171188
    [14] YAN Zimu, LIANG Jiaju, HAO Yongcun, et al. A micro resonant DC electric field sensor based on mode localization phenomenon[C]. 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Korea (South), 2019: 849–852. doi: 10.1109/MEMSYS.2019.8870880.
    [15] 叶天翔. 基于SOI的电场传感器[D]. [硕士论文], 清华大学, 2014.

    YE Tianxiang. The Electric field sensor based on SOI[D]. [Master dissertation], Tsinghua Univeristy, 2014.
    [16] YANG Pengfei, WEN Xiaolong, CHU Zhaozhi, et al. AC/DC fields demodulation methods of resonant electric field microsensor[J]. Micromachines, 2020, 11(5): 511. doi: 10.3390/mi11050511
    [17] 闻小龙, 彭春荣, 杨鹏飞, 等. 基于MEMS技术的非接触式人体静电测量装置[J]. 电子与信息学报, 2017, 39(8): 1835–1840. doi: 10.11999/JEIT161190

    WEN Xiaolong, PENG Chunrong, YANG Pengfei, et al. Non-contact human body electrostatic voltmeter based on MEMS technology[J]. Journal of Electronics &Information Technology, 2017, 39(8): 1835–1840. doi: 10.11999/JEIT161190
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1185
  • HTML全文浏览量:  436
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 修回日期:  2020-12-08
  • 网络出版日期:  2020-12-30
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回