高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进简化实频技术的超宽带功率放大器设计

刘国华 周国祥 郭灿天赐 程知群

刘国华, 周国祥, 郭灿天赐, 程知群. 基于改进简化实频技术的超宽带功率放大器设计[J]. 电子与信息学报, 2021, 43(6): 1617-1621. doi: 10.11999/JEIT200564
引用本文: 刘国华, 周国祥, 郭灿天赐, 程知群. 基于改进简化实频技术的超宽带功率放大器设计[J]. 电子与信息学报, 2021, 43(6): 1617-1621. doi: 10.11999/JEIT200564
Guohua LIU, Guoxiang ZHOU, Cantianci GUO, Zhiqun CHENG. Design of Ultra-wideband Power Amplifier Based on Modified Simplified Real Frequency Technology[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1617-1621. doi: 10.11999/JEIT200564
Citation: Guohua LIU, Guoxiang ZHOU, Cantianci GUO, Zhiqun CHENG. Design of Ultra-wideband Power Amplifier Based on Modified Simplified Real Frequency Technology[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1617-1621. doi: 10.11999/JEIT200564

基于改进简化实频技术的超宽带功率放大器设计

doi: 10.11999/JEIT200564
基金项目: 国家自然科学基金(91938201, 61871169);浙江省自然科学基金(LZ20F010004)
详细信息
    作者简介:

    刘国华:男,1975年生,博士,副教授,研究方向为射频功率放大器设计

    周国祥:男,1996年生,硕士生,研究方向为射频功率放大器电路设计与应用

    郭灿天赐:男,1995年生,硕士生,研究方向为射频功率放大器电路设计与应用

    程知群:男,1964年生,教授,博士生导师,研究方向为高效率功率放大器、新型半导体器件结构和建模技术、射频/微波集成电路、毫米波/太赫兹集成电路设计

    通讯作者:

    刘国华 ghliu@hdu.edu.cn

  • 中图分类号: TN722

Design of Ultra-wideband Power Amplifier Based on Modified Simplified Real Frequency Technology

Funds: The National Natural Science Foundation (91938201, 61871169), Zhejiang Provincial Natural Science Foundation (LZ20F010004)
  • 摘要: 该文提出了一种基于改进简化实频算法的跨多倍频超宽带功率放大器。结合负载牵引技术,分析晶体管负载端的最优阻抗值变化。通过改进简化实频法中的优化目标和误差函数,对频段内选取多个频点的最优阻抗进行分析,设计并优化出了功率放大器的输出匹配电路,提高了功放的工作带宽。测试结果显示,在 0.5~2.7 GHz频段内,饱和输出功率达到 42.5 dBm,饱和漏极效率为 64%~75%。
  • 图  1  散射参数的匹配网络

    图  2  简化实频法得到的输出匹配电路

    图  3  晶体管负载数据和输出匹配网络

    图  4  匹配电路的S参数仿真结果

    图  5  整体拓扑结构

    图  6  小信号仿真与测试结果

    图  7  漏极效率、输出功率和增益仿真与测试结果

    表  1  各个频点下的最优阻抗值

    频率(GHz)Zopt(Ω)频率(GHz)Zopt(Ω)
    0.526.9+j*23.61.827.4+j*9.3
    0.831.7+j*12.92.019.6+j*16.8
    1.026.1+j*11.12.321.3+j*9.1
    1.319.9+j*14.12.518.3+j*7.2
    1.521.2+j*7.92.717.5+j*6.5
    下载: 导出CSV

    表  2  本文与近几年论文中功放主要指标对比

    参考文献频段(GHz)漏极效率(%)增益(dB)输出功率(dBm)相对带宽(%)
    文献[15]1.2~3.660~7210.1~11.540.0~42.2100
    文献[16]0.6~2.552~739.2~11.339.0~40.5120
    文献[17]0.5~2.360~8111.7~12.539.2~41.2129
    文献[18]0.4~2.362~8111.0~14.039.0~42.0141
    本文0.52.7647510.012.340.042.5137
    下载: 导出CSV
  • [1] 程知群, 张志维, 刘国华, 等. 基于GaN HEMT的混合EF类功率放大器设计[J]. 微波学报, 2019, 35(2): 34–37. doi: 10.14183/j.cnki.1005-6122.201902008

    CHENG Zhiqun, ZHANG Zhiwei, LIU Guohua, et al. Design of hybrid EF Class power amplifier based on GaN HEMT[J]. Journal of Microwaves, 2019, 35(2): 34–37. doi: 10.14183/j.cnki.1005-6122.201902008
    [2] 程知群, 轩雪飞, 刘国华, 等. 宽带F类功率放大器的设计[J]. 微波学报, 2017, 33(4): 55–58. doi: 10.14183/j.cnki.1005-6122.201704012

    CHENG Zhiqun, XUAN Xuefei, LIU Guohua, et al. Design of broadband class-F power amplifier[J]. Journal of Microwaves, 2017, 33(4): 55–58. doi: 10.14183/j.cnki.1005-6122.201704012
    [3] CHEN Jinhu, HE Songbai, YOU Fei, et al. Design of broadband high-efficiency power amplifiers based on a series of continuous modes[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(9): 631–633. doi: 10.1109/LMWC.2014.2331457
    [4] GAN Decheng and SHI Weimin. Design of a broadband doherty power amplifier based on hybrid continuous mode[J]. IEEE Access, 2019, 7: 86194–86204. doi: 10.1109/access.2019.2925958
    [5] NI Chun, CHEN Mingsheng, ZHANG Zhongxiang, et al. Design of broadband high-efficient PA based on hybrid continuous modes[J]. The Journal of Engineering, 2017(1): 1–3. doi: 10.1049/joe.2016.0310
    [6] ZHANG Zhiwei and CHENG Zhiqun. A multi-octave power amplifier based on mixed continuous modes[J]. IEEE Access, 2019, 7: 178201–178208. doi: 10.1109/ACCESS.2019.2957926
    [7] POLURI N and DE SOUZA M M. High-efficiency modes contiguous with class B/J and continuous class F−1 amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(2): 137–139. doi: 10.1109/LMWC.2018.2886655
    [8] 徐樱杰, 王晶琦, 朱晓维. GaN逆F类高效率功率放大器及线性化研究[J]. 电子与信息学报, 2012, 34(4): 981–985. doi: 10.3724/SP.J.1146.2011.00382

    XU Yingjie, WANG Jingqi, and ZHU Xiaowei. Investigation on GaN inverse Class-F highly efficient power amplifier and linearization[J]. Journal of Electronics &Information Technology, 2012, 34(4): 981–985. doi: 10.3724/SP.J.1146.2011.00382
    [9] LIU Guohua, LI Sudong, and CHENG Zhiqun. A power amplifier based on filter matching circuit[C]. 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, Taiyuan, China, 2019.
    [10] HAIDER M F, YOU Fei, SHI Weimin, et al. Broadband power amplifier using hairpin bandpass filter matching network[J]. Electronics Letters, 2020, 56(4): 182–184. doi: 10.1049/el.2019.3047
    [11] YARMAN B S. Automated design of antenna matching networks with optimum circuit topology on MatLab[C]. 2009 IEEE Applied Electromagnetics Conference, Kolkata, India, 2009.
    [12] BOROWIEC R. Some aspects of using simplified real frequency technique[C]. The 21st International Conference on Microwave, Radar and Wireless Communications, Krakow, Poland, 2016.
    [13] WU D Y T, MKADEM F, and BOUMAIZA S. Design of a broadband and highly efficient 45W GaN power amplifier via simplified real frequency technique[C]. 2010 IEEE MTT-S International Microwave Symposium, Anaheim, USA, 2010.
    [14] 孙健健, 徐建华, 成海峰, 等. 基于金属销钉封装的Ka波段固态功率放大模块研究[J]. 电子与信息学报, 2020, 42(12): 3074–3080. doi: 10.11999/JEIT190791

    SUN Jianjian, XU Jinahua, CHENG Haifeng, et al. Research on Ka-band solid-state power amplifier module packages using a lid of nails[J]. Journal of Electronics &Information Technology, 2020, 42(12): 3074–3080. doi: 10.11999/JEIT190791
    [15] HUANG Chaoyi, HE Songbai, SHI Weimin, et al. Design of broadband high-efficiency power amplifiers based on the hybrid continuous modes with phase shift parameter[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(2): 159–161. doi: 10.1109/LMWC.2017.2787061
    [16] NI Chun, LIU Changqing, CHEN Mingsheng, et al. A broadband hybrid continuous power amplifier[C]. 2018 IEEE International Conference on Computational ElectroMagnetics (ICCEM), Chengdu, China, 2018.
    [17] ZHENG Shaoyong, LIU Zhaowu, ZHANG Xiuying, et al. Design of ultrawideband high-efficiency extended continuous class-F power amplifier[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4661–4669. doi: 10.1109/TIE.2017.2772163
    [18] TANG Qinghu, LI Yanghua, LI Wenguang, et al. Over second octave power amplifier design based on resistive–resistive series of continuous class-F/F−1 modes[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(5): 494–496. doi: 10.1109/LMWC.2017.2690847
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1484
  • HTML全文浏览量:  600
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-26
  • 修回日期:  2020-09-24
  • 网络出版日期:  2020-09-26
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回