高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间金字塔与局部感受野相结合的相关熵极限学习机

刘彬 刘静 吴超 杨有恒

刘彬, 刘静, 吴超, 杨有恒. 空间金字塔与局部感受野相结合的相关熵极限学习机[J]. 电子与信息学报, 2021, 43(8): 2343-2351. doi: 10.11999/JEIT200562
引用本文: 刘彬, 刘静, 吴超, 杨有恒. 空间金字塔与局部感受野相结合的相关熵极限学习机[J]. 电子与信息学报, 2021, 43(8): 2343-2351. doi: 10.11999/JEIT200562
Bin LIU, Jing LIU, Chao WU, Youheng YANG. Correntropy Extreme Learning Machine Based on Spatial Pyramid Matching and Local Receptive Field[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2343-2351. doi: 10.11999/JEIT200562
Citation: Bin LIU, Jing LIU, Chao WU, Youheng YANG. Correntropy Extreme Learning Machine Based on Spatial Pyramid Matching and Local Receptive Field[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2343-2351. doi: 10.11999/JEIT200562

空间金字塔与局部感受野相结合的相关熵极限学习机

doi: 10.11999/JEIT200562
基金项目: 河北省自然科学基金(F2019203320, E2018203398)
详细信息
    作者简介:

    刘彬:男,1953年生,教授,研究方向为计算机视觉

    刘静:女,1996年生,硕士生,研究方向为计算机视觉

    吴超:男,1990年生,博士生,研究方向为计算机视觉

    杨有恒:男,1996年生,硕士生,研究方向为机器学习

    通讯作者:

    刘彬 liubin311@163.com

  • 中图分类号: TN911.73; TP391

Correntropy Extreme Learning Machine Based on Spatial Pyramid Matching and Local Receptive Field

Funds: The Natural Science Foundation of Hebei Province (F2019203320, E2018203398)
  • 摘要: 针对空间金字塔词袋模型中空间特征分布信息利用效率低,各类特征融合不充分的问题,该文提出空间金字塔与局部感受野相结合的相关熵极限学习机(SR-CELM)。在特征提取部分,利用多尺度局部感受野对生成的多层级的字典特征分布图进行卷积,并引入局部位置特征和全局轮廓特征。在特征分类部分,提出一种新的网络以融合各部分特征。同时在传统极限学习机训练方法的基础上利用相关熵准则构建判别性约束,推导出权重更新公式以求解网络的输出权重。为验证SR-CELM的有效性,该文分别在数据库Caltech 101, MSRC和15 Scene上进行实验。实验表明SR-CELM能够充分利用特征中可辨识信息,提高分类正确率。
  • 图  1  SR-CELM结构图

    图  2  不同子区域特征频率统计图

    图  3  不同参数变化时网络正确率曲面图

    图  4  不同字典维数下循环次数和感受野个数对网络正确率影响折线图

    图  5  4种方法对Caltech 101数据库中具有嘈杂背景图像的正确率

    图  8  4种方法对MSRC数据库中具有嘈杂背景图像的正确率

    图  6  不同参数变化时网络正确率曲面图

    图  7  不同字典维数下循环次数和感受野个数对网络正确率影响折线图

    图  9  不同参数变化时网络正确率曲面图

    图  10  不同字典维数下循环次数和感受野个数对网络正确率影响折线图

    图  11  4种方法对15 Scene数据库中具有嘈杂背景图像的正确率

    表  1  Caltech 101正确率(%)与训练时间(s)

    方法SPMGoogleNet[11]文献[18]文献[19]AlexNet[9]SVM[14]KELM[14]文献[15]F-ELM[14]CF-ELM文献[17]SR-CELM
    字典维数40020482048400400400400400600400600
    训练时间13560540.30538.56539.77569.80586.58631.46
    正确率64.1373.2173.4474.9075.9177.9378.8477.9380.1983.6583.9083.7284.13
    下载: 导出CSV

    表  2  MSRC正确率(%)与训练时间(s)

    方法文献[20]文献[21]KELMF-ELM文献[15]SVMCF-ELMELM-MSLRFSR-CELM
    字典维数265400400400400400400400400600
    训练时间17.0117.0417.1118.2013.2419.5925.46
    正确率71.0083.5091.7493.4993.9794.1395.7696.0196.3596.83
    下载: 导出CSV

    表  3  15 Scene正确率(%)与训练时间(s)

    方法AlexNet文献[18]VGGNet[22]KELMF-ELMSVMCF-ELM文献[15]GoogleNet文献[17]SR-CELM
    字典维数1000400400400400400600400600
    训练时间106.11106.41106.25120.107020131.35147.45
    正确率74.5481.7384.7583.5384.3386.4687.7686.4689.3490.1088.3488.71
    下载: 导出CSV
  • [1] CSURKA G, DANCE C R, FAN Lixin, et al. Visual categorization with bags of keypoints[C]. Workshop on Statistical Learning in Computer Vision, European Conference on Computer Vision, Prague, Czech Republic, 2004: 1–22.
    [2] LAZEBNIK S, SCHMID C, and PONCE J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[C]. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 2169–2178. doi: 10.1109/CVPR.2006.68.
    [3] LI Qing, PENG Qiang, CHEN Junzhou, et al. Improving image classification accuracy with ELM and CSIFT[J]. Computing in Science & Engineering, 2019, 21(5): 26–34. doi: 10.1109/MCSE.2018.108164708
    [4] HUANG Guangbin, ZHU Qinyu, and SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489–501. doi: 10.1016/j.neucom.2005.12.126
    [5] PARK J M and KIM J H. Online recurrent extreme learning machine and its application to time-series prediction[C]. 2017 International Joint Conference on Neural Networks, Anchorage, USA, 2017: 1983–1990. doi: 10.1109/ijcnn.2017.7966094.
    [6] LIU Zheng, WEI Jin, and YING Mu. Variances-constrained weighted extreme learning machine for imbalanced classification[J]. Neurocomputing, 2020, 403: 45–52.
    [7] 刘彬, 杨有恒, 赵志彪, 等. 一种基于正则优化的批次继承极限学习机算法[J]. 电子与信息学报, 2020, 42(7): 1734–1742. doi: 10.11999/JEIT190502

    LIU Bin, YANG Youheng, ZHAO Zhibiao, et al. A batch inheritance extreme learning machine algorithm based on regular optimization[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1734–1742. doi: 10.11999/JEIT190502
    [8] HUANG Guangbin, BAI Zuo, KASUN L L C, et al. Local receptive fields based extreme learning machine[J]. IEEE Computational Intelligence Magazine, 2015, 10(2): 18–29. doi: 10.1109/mci.2015.2405316
    [9] KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, New York, USA, 2012: 1097–1105.
    [10] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv: 1409.1556, 2014.
    [11] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/cvpr.2015.7298594.
    [12] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [13] XING Hongjie and WANG Xinmei. Training extreme learning machine via regularized correntropy criterion[J]. Neural Computing and Applications, 2013, 23(7/8): 1977–1986. doi: 10.1007/s00521-012-1184-y
    [14] 吴超, 李雅倩, 张亚茹, 等. 用于表示级特征融合与分类的相关熵融合极限学习机[J]. 电子与信息学报, 2020, 42(2): 386–393. doi: 10.11999/JEIT190186

    WU Chao, LI Yaqian, ZHANG Yaru, et al. Correntropy-based fusion extreme learning machine for representation level feature fusion and classification[J]. Journal of Electronics &Information Technology, 2020, 42(2): 386–393. doi: 10.11999/JEIT190186
    [15] 李雅倩, 吴超, 李海滨, 等. 局部位置特征与全局轮廓特征相结合的图像分类方法[J]. 电子学报, 2018, 46(7): 1726–1731. doi: 10.3969/j.issn.0372-2112.2018.07.026

    LI Yaqian, WU Chao, LI Haibin, et al. Image classification method combining local position feature with global contour feature[J]. Acta Electronica Sinica, 2018, 46(7): 1726–1731. doi: 10.3969/j.issn.0372-2112.2018.07.026
    [16] HUANG Jinghong, YU Zhuliang, CAI Zhaoquan, et al. Extreme learning machine with multi-scale local receptive fields for texture classification[J]. Multidimensional Systems and Signal Processing, 2017, 28(3): 995–1011. doi: 10.1007/s11045-016-0414-3
    [17] KONIUSZ P, YAN Fei, GOSSELIN P H, et al. Higher-order occurrence pooling for bags-of-words: Visual concept detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2): 313–326. doi: 10.1109/TPAMI.2016.2545667
    [18] WANG Jinjun, YANG Jianchao, YU Kai, et al. Locality-constrained Linear Coding for image classification[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 13–18. doi: 10.1109/CVPR.2010.5540018.
    [19] 肖文华, 包卫东, 陈立栋, 等. 一种用于图像分类的语义增强线性编码方法[J]. 电子与信息学报, 2015, 37(4): 791–797. doi: 10.11999/JEIT140743

    XIAO Wenhua, BAO Weidong, CHEN Lidong, et al. A semantic enhanced linear coding for image classification[J]. Journal of Electronics &Information Technology, 2015, 37(4): 791–797. doi: 10.11999/JEIT140743
    [20] LI Weisheng, DONG Peng, XIAO Bin, et al. Object recognition based on the region of interest and optimal bag of words model[J]. Neurocomputing, 2016, 172: 271–280. doi: 10.1016/j.neucom.2015.01.083
    [21] KHAN R, BARAT C, MUSELET D, et al. Spatial histograms of soft pairwise similar patches to improve the bag-of-visual-words model[J]. Computer Vision and Image Understanding, 2015, 132: 102–112. doi: 10.1016/j.cviu.2014.09.005
    [22] 姜轩. 基于深度学习的场景图像分类算法研究[D]. [硕士论文], 北京邮电大学, 2019.

    JIANG Xuan. Research on scene image classification algrithm based on deep learning[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2019.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1086
  • HTML全文浏览量:  363
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-29
  • 修回日期:  2020-12-05
  • 网络出版日期:  2020-12-16
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回