高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀疏码分多址系统一种改进的检测算法

武汉 郝保明 邵凯

武汉, 郝保明, 邵凯. 稀疏码分多址系统一种改进的检测算法[J]. 电子与信息学报, 2021, 43(8): 2165-2170. doi: 10.11999/JEIT200532
引用本文: 武汉, 郝保明, 邵凯. 稀疏码分多址系统一种改进的检测算法[J]. 电子与信息学报, 2021, 43(8): 2165-2170. doi: 10.11999/JEIT200532
Han WU, Baoming HAO, Kai SHAO. An Improved Detection Algorithm for Sparse Code Multiple Access System[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2165-2170. doi: 10.11999/JEIT200532
Citation: Han WU, Baoming HAO, Kai SHAO. An Improved Detection Algorithm for Sparse Code Multiple Access System[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2165-2170. doi: 10.11999/JEIT200532

稀疏码分多址系统一种改进的检测算法

doi: 10.11999/JEIT200532
基金项目: 安徽省科技重大专项(18030901023),宿州学院重点科研项目(2016yzd02)
详细信息
    作者简介:

    武汉:男,1991年生,助理教授,研究方向为新型多载波调制技术、新型多址接入技术

    郝保明:男,1980年生,讲师,研究方向为数字图像处理和语音信号处理

    邵凯:男,1977年生,副教授,研究方向为新型多载波调制技术、新型多址接入技术

    通讯作者:

    武汉 wuhan05023@163.com

  • 中图分类号: TN911

An Improved Detection Algorithm for Sparse Code Multiple Access System

Funds: Anhui Science and Technology Major Project (18030901023), The Key Scientific Research Project of Suzhou University (2016yzd02)
  • 摘要: 稀疏码分多址(SCMA)系统中基于球形译码算法(SD)由于具有优良的性能受到越来越多的关注,然而现有基于SD的算法只能用于某些特定星座结构的检测,导致其应用受限。该文提出一种适用于任意星座且性能达到最大似然(ML)算法性能的改进球形译码(ISD)算法。该算法将用户星座图拆分,并将用户星座图转换为多层树结构,利用对树结构的搜索完成译码操作,并且对树的搜索是从高层向低层进行的。因此,可以将SCMA检测转换成最小化树结构部分度量问题;同时,所提出的改进算法对星座图的结构无任何限制,所以该算法适用于任意类型的星座图。此外,由于SCMA的稀疏性,每一层的部分度量均与分配给每个资源元素的用户无关,从而进一步降低了计算复杂度。
  • 图  1  树结构

    图  2  不同检测算法在4-Beko和T16QAM星座图下SCMA系统性能

    图  3  不同检测算法在通用星座图下的平均BER性能对比

    图  4  不同检测算法在通用星座图下的复杂度对比

    图  5  MPA和ISD算法在4-Beko星座图下的复杂度对比

    图  6  MPA和ISD算法在T16QAM星座图下的复杂度对比

  • [1] IMT-2020(5G)推进组. 5G概念白皮书[R]. 2015: 1–18.

    IMT-2020(5G) Promotion. 5G concept white paper[R]. 2015: 1–18.
    [2] ANDREWS J G, BUZZI S, CHOI W, et al. What will 5G be?[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1065–1082. doi: 10.1109/JSAC.2014.2328098
    [3] 谢显中, 黎佳, 黄倩, 等. 机器类通信中基于NOMA短编码块传输的高可靠低迟延无线资源分配优化方案[J]. 电子与信息学报, 2019, 41(11): 2549–2556. doi: 10.11999/JEIT190128

    XIE Xianzhong, LI Jia, HUANG Qian, et al. Optimal scheme of resource allocation for ultra-reliable and low-latency in machine type communications based on non-orthogonal multiple access with short block transmission[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2549–2556. doi: 10.11999/JEIT190128
    [4] 尤肖虎, 潘志文, 高西奇, 等. 5G移动通信发展趋势与若干关键技术[J]. 中国科学: 信息科学, 2014, 44(5): 551–563. doi: 10.1360/N112014-00032

    YOU Xiaohu, PAN Zhiwen, GAO Xiqi, et al. The 5G mobile communication: The development trends and its emerging key techniques[J]. Scientia Sinica Information, 2014, 44(5): 551–563. doi: 10.1360/N112014-00032
    [5] NIKOPOUR H and BALIGH H. Sparse code multiple access[C]. The 24th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, London, UK, 2013: 332–336. doi: 10.1109/PIMRC.2013.6666156.
    [6] WEI Fan and CHEN Wen. A low complexity SCMA decoder based on list sphere decoding[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOM.2016.7841513.
    [7] WEI Fan and CHEN Wen. Low complexity iterative receiver design for sparse code multiple access[J]. IEEE Transactions on Communications, 2017, 65(2): 621–634. doi: 10.1109/TCOMM.2016.2631468
    [8] YANG Lin, MA Xinying, and SIU Yunming. Low complexity MPA detector based on sphere decoding for SCMA[J]. IEEE Communications Letters, 2017, 21(8): 1855–1858. doi: 10.1109/LCOMM.2017.2697425
    [9] CHEN Guangjin, DAI Jincheng, NIU Kai, et al. Optimal receiver design for SCMA system[C]. The 28th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Montreal, Canada, 2017: 1–6. doi: 10.1109/PIMRC.2017.8292420.
    [10] LI Lanping, WEN Jinming, TANG Xiaohu, et al. Modified sphere decoding for sparse code multiple access[J]. IEEE Communications Letters, 2018, 22(8): 1544–1547. doi: 10.1109/LCOMM.2018.2848273
    [11] KARAKCHIEVA L and TRIFONOV P. Joint list multistage decoding with sphere detection for polar coded SCMA systems[C]. The 12th International ITG Conference on Systems, Communications and Coding, Rostock, Germany, 2019: 1–6. doi: 10.30420/454862018.
    [12] VAMEGHESTAHBANATI M, MARSLAND I D, GOHARY R H, et al. Multidimensional constellations for uplink SCMA systems—A comparative study[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2169–2194. doi: 10.1109/COMST.2019.2910569
    [13] VAMEGHESTAHBANATI M, BEDEER E, MARSLAND I, et al. Enabling sphere decoding for SCMA[J]. IEEE Communications Letter, 2017, 21(12): 2750–2753. doi: 10.1109/LCOMM.2017.2747550
    [14] DAMEN M O, EL GAMAL H, and CAIRE G. On maximum-likelihood detection and the search for the closest lattice point[J]. IEEE Transactions on Information Theory, 2003, 49(10): 2389–2402. doi: 10.1109/TIT.2003.817444
    [15] MA Zheng and BAO Jinchen. Sparse code multiple access (SCMA)[M]. VAEZI M, DING Zhiguo, and POOR H V. Multiple Access Techniques for 5G Wireless Networks and Beyond. Cham: Springer, 2019: 369–416.
    [16] BEKO M and DINIS R. Designing good multi-dimensional constellations[J]. IEEE Wireless Communications Letters, 2012, 1(3): 221–224. doi: 10.1109/WCL.2012.032312.120203
    [17] TAHERZADEH M, NIKOPOUR H, BAYESTEH A, et al. SCMA codebook design[C]. The 80th IEEE Vehicular Technology Conference, Vancouver, Canada, 2014: 1–5. doi: 10.1109/VTCFall.2014.6966170.
    [18] Altera Innovate Asia FPGA Design Contest. 5G algorithm innovation competition[EB/OL]. http://www.innovateasia.com/5g/en/gp2.html, 2015.
  • 加载中
图(6)
计量
  • 文章访问数:  1020
  • HTML全文浏览量:  442
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-30
  • 修回日期:  2020-12-13
  • 网络出版日期:  2020-12-30
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回