高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于差分传输管预充电逻辑的功耗恒定性电路改进设计

姚茂群 李聪辉

姚茂群, 李聪辉. 基于差分传输管预充电逻辑的功耗恒定性电路改进设计[J]. 电子与信息学报, 2021, 43(7): 1834-1840. doi: 10.11999/JEIT200513
引用本文: 姚茂群, 李聪辉. 基于差分传输管预充电逻辑的功耗恒定性电路改进设计[J]. 电子与信息学报, 2021, 43(7): 1834-1840. doi: 10.11999/JEIT200513
Maoqun YAO, Conghui LI. Improved Design of Constant Power Consumption Circuit Based on Differential Pass-transistor Precharge Logic[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1834-1840. doi: 10.11999/JEIT200513
Citation: Maoqun YAO, Conghui LI. Improved Design of Constant Power Consumption Circuit Based on Differential Pass-transistor Precharge Logic[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1834-1840. doi: 10.11999/JEIT200513

基于差分传输管预充电逻辑的功耗恒定性电路改进设计

doi: 10.11999/JEIT200513
基金项目: 国家自然科学基金(61771179),浙江省自然科学基金(LY15F010011)
详细信息
    作者简介:

    姚茂群:女,1967年生,教授,研究方向为低功耗数字集成电路设计、智能控制、神经网络和模糊逻辑、物联网及应用

    李聪辉:男,1996年生,硕士生,研究方向为低功耗数字集成电路设计、硬件安全

    通讯作者:

    姚茂群 yaomaoqun@163.com

  • 中图分类号: TN791

Improved Design of Constant Power Consumption Circuit Based on Differential Pass-transistor Precharge Logic

Funds: The National Natural Science Foundation of China (61771179), Zhejiang Provincial Natural Science Foundation (LY15F010011)
  • 摘要: 通过分析差分传输管预充电逻辑(DP2L)的电路结构,发现该电路还无法达到完全的功耗恒定特性,仍然存在被功耗攻击的风险。针对该问题,该文对DP2L的电路结构进行改进,并用Hspice对改进前后的电路进行模拟仿真测试。实验表明:改进后的DP2L电路结构具有更好的功耗恒定特性,更能满足该逻辑电路的设计要求。
  • 图  1  DP2L单轨输出“或”逻辑

    图  2  DP2L双轨输出“或”逻辑的构成

    图  3  4种输入信号下的DP2L单轨输出“或”逻辑瞬态电流曲线

    图  4  改进后DP2L单轨输出“或”逻辑

    图  5  4种输入信号下的改进后DP2L单轨输出“或”逻辑瞬态电流曲线

    图  6  4种输入信号下改进后DP2L双轨输出“或”逻辑瞬态电流曲线

    表  1  改进前DP2L单轨电路相关参数

    输入条件$a$=0, $b$=0$a$=0, $b$=1$a$=1, $b$=0$a$=1, $b$=1
    “0→1”翻转电流(μA)/48.8687.8262.12
    “1→0”翻转电流(μA)/58.1738.7597.74
    NED(%)33.05
    下载: 导出CSV

    表  2  改进后DP2L单轨电路相关参数

    输入条件$a$=0, $b$=0$a$=0, $b$=1$a$=1, $b$=0$a$=1, $b$=1
    “0→1”翻转电流(μA)/108.32107.65140.18
    “1→0”翻转电流(μA)/97.9698.31136.58
    NED(%)25.58
    下载: 导出CSV

    表  3  改进后DP2L双轨电路相关参数

    输入条件$a$=0, $b$=0$a$=0, $b$=1$a$=1, $b$=0$a$=1, $b$=1
    “0→1”翻转电流(μA)139.12139.01139.67139.51
    “1→0”翻转电流(μA)136.73136.51136.95136.82
    NED(%)0.40
    下载: 导出CSV

    表  4  同类型逻辑实现的“或”门标准化能量偏差对比

    逻辑电路WDDL改进前DP2L双轨电路LBDL改进后DP2L双轨电路
    NED(%)11.505.363.230.40
    下载: 导出CSV
  • [1] 黄海, 冯新新, 刘红雨, 等. 基于随机加法链的高级加密标准抗侧信道攻击对策[J]. 电子与信息学报, 2019, 41(2): 348–354. doi: 10.11999/JEIT171211

    HUANG Hai, FENG Xinxin, LIU Hongyu, et al. Random addition-chain based countermeasure against side-channel attack for advanced encryption standard[J]. Journal of Electronics &Information Technology, 2019, 41(2): 348–354. doi: 10.11999/JEIT171211
    [2] 陈华, 习伟, 范丽敏, 等. 密码产品的侧信道分析与评估[J]. 电子与信息学报, 2020, 42(8): 1836–1845. doi: 10.11999/JEIT190853

    CHEN Hua, XI Wei, FAN Limin, et al. Side channel analysis and evaluation on cryptographic products[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1836–1845. doi: 10.11999/JEIT190853
    [3] UTYAMISHEV D and PARTIN-VAISBAND I. Real-time detection of power analysis attacks by machine learning of power supply variations on-chip[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(1): 45–55. doi: 10.1109/TCAD.2018.2883971
    [4] ASHOK P and VETTUVANAM SOMASUNDARAM K B. Charge balancing symmetric pre-resolve adiabatic logic against power analysis attacks[J]. IET Information Security, 2019, 13(6): 692–702. doi: 10.1049/iet-ifs.2018.5136
    [5] MESSERGES T S, DABBISH E A, and SLOAN R H. Examining smart-card security under the threat of power analysis attacks[J]. IEEE Transactions on Computers, 2002, 51(5): 541–552. doi: 10.1109/TC.2002.1004593
    [6] SENGUPTA A, MAZUMDAR B, YASIN M, et al. Logic locking with provable security against power analysis attacks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(4): 766–778. doi: 10.1109/TCAD.2019.2897699
    [7] GOHIL N N and VEMURI R R. Automated synthesis of differential power attack resistant integrated circuits[C]. 2019 IEEE National Aerospace and Electronics Conference, Dayton, USA, 2019: 204–211. doi: 10.1109/NAECON46414.2019.9057882.
    [8] ZHENG Zhen and YAN Yingjian. Design of a power randomization circuit for block ciphers[C]. The IEEE 4th International Conference on Integrated Circuits and Microsystems, Beijing, China, 2019: 6–11. doi: 10.1109/ICICM48536.2019.8977152.
    [9] KUMAR S D and THAPLIYAL H. Exploration of non-volatile MTJ/CMOS circuits for DPA-resistant embedded hardware[J]. IEEE Transactions on Magnetics, 2019, 55(12): 3401308. doi: 10.1109/TMAG.2019.2943053
    [10] HWANG D D, TIRI K, HODJAT A, et al. AES-based security coprocessor IC in 0.18-μm CMOS with resistance to differential power analysis side-channel attacks[J]. IEEE Journal of Solid-State Circuits, 2006, 41(4): 781–792. doi: 10.1109/JSSC.2006.870913
    [11] AVITAL M, LEVI I, KEREN O, et al. CMOS based gates for blurring power information[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(7): 1033–1042. doi: 10.1109/TCSI.2016.2546387
    [12] TIRI K, AKMAL M, and VERBAUWHEDE I. A dynamic and differential CMOS logic with signal independent power consumption to withstand differential power analysis on smart cards[C]. The 28th European Solid-state Circuits Conference, Florence, Italy, 2002: 403–406.
    [13] TIRI K and VERBAUWHEDE I. A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation[C]. The Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 2004: 246–251. doi: 10.1109/DATE.2004.1268856.
    [14] 钱浩宇, 汪鹏君, 丁代鲁, 等. 基于SABL的防御差分功耗分析移位寄存器设计[J]. 电子技术应用, 2017, 43(2): 40–43. doi: 10.16157/j.issn.0258-7998.2017.02.008

    QIAN Haoyu, WANG Pengjun, DING Dailu, et al. Design of resistant differential power analysis shift register based on SABL[J]. Application of Electronic Technique, 2017, 43(2): 40–43. doi: 10.16157/j.issn.0258-7998.2017.02.008
    [15] BUCCI M, GIANCANE L, LUZZI R, et al. A flip-flop for the DPA resistant three-phase dual-rail pre-charge logic family[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2012, 20(11): 2128–2132. doi: 10.1109/tvlsi.2011.2165862
    [16] YU Weize and WEN Yiming. Leveraging balanced logic gates as strong PUFs for securing IoT against malicious attacks[J]. Journal of Electronic Testing, 2019, 35(6): 853–865. doi: 10.1007/s10836-019-05833-9
    [17] BELLIZIA D, SCOTTI G, and TRIFILETTI A. TEL logic style as a countermeasure against side-channel attacks: Secure cells library in 65nm CMOS and experimental results[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(11): 3874–3884. doi: 10.1109/TCSI.2018.2861738
    [18] 乐大珩. 抗功耗攻击的密码芯片电路级防护关键技术研究[D]. [博士论文], 国防科学技术大学, 2011.

    YUE Daheng. Research on circuit-level design against power analysis attack for cryptographic chip[D]. [Ph. D. dissertation], National University of Defense Technology, 2011.
    [19] 王晨旭. 密码芯片抗功耗攻击技术研究[D]. [博士论文], 哈尔滨工业大学, 2013.

    WANG Chenxu. Research on the power analysis resistant technology of cryptographic IC[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2013.
    [20] 乐大珩, 李少青, 张民选. 基于LBDL逻辑的抗DPA攻击电路设计方法[J]. 国防科技大学学报, 2009, 31(6): 18–24. doi: 10.3969/j.issn.1001-2486.2009.06.004

    YUE Daheng, LI Shaoqing, and ZHANG Minxuan. An LBDL based VLSI design method to counteract DPA attacks[J]. Journal of National University of Defense Technology, 2009, 31(6): 18–24. doi: 10.3969/j.issn.1001-2486.2009.06.004
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  851
  • HTML全文浏览量:  710
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-23
  • 修回日期:  2020-12-03
  • 网络出版日期:  2020-12-21
  • 刊出日期:  2021-07-10

目录

    /

    返回文章
    返回