高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于降维波束空间的实值ESPRIT单基地MIMO雷达测角算法

刘东贺 赵永波 庞晓娇 曹成虎 陈胜

刘东贺, 赵永波, 庞晓娇, 曹成虎, 陈胜. 基于降维波束空间的实值ESPRIT单基地MIMO雷达测角算法[J]. 电子与信息学报, 2021, 43(12): 3639-3646. doi: 10.11999/JEIT200485
引用本文: 刘东贺, 赵永波, 庞晓娇, 曹成虎, 陈胜. 基于降维波束空间的实值ESPRIT单基地MIMO雷达测角算法[J]. 电子与信息学报, 2021, 43(12): 3639-3646. doi: 10.11999/JEIT200485
Donghe LIU, Yongbo ZHAO, Xiaojiao PANG, Chenghu CAO, Sheng CHEN. DOA Estimation Algorithm Based on Reduced-dimensional Beamspace with Real-valued ESPRIT for Monostatic MIMO Radar[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3639-3646. doi: 10.11999/JEIT200485
Citation: Donghe LIU, Yongbo ZHAO, Xiaojiao PANG, Chenghu CAO, Sheng CHEN. DOA Estimation Algorithm Based on Reduced-dimensional Beamspace with Real-valued ESPRIT for Monostatic MIMO Radar[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3639-3646. doi: 10.11999/JEIT200485

基于降维波束空间的实值ESPRIT单基地MIMO雷达测角算法

doi: 10.11999/JEIT200485
基金项目: 高等学校学科创新引智计划(B18039)
详细信息
    作者简介:

    刘东贺:男,1994年生,博士生,研究方向为MIMO雷达阵列信号处理

    赵永波:男,1972年生,教授,博士生导师,研究方向为雷达信号处理、自适应信号处理和雷达信号参数估计

    庞晓娇:女,1993年生,博士生,研究方向为压缩感知和阵列信号处理

    曹成虎:男,1987年生,博士生,研究方向为微弱目标检测与跟踪

    陈胜:男,1993年生,博士生,研究方向为雷达信号处理和MIMO雷达

    通讯作者:

    赵永波 ybzhao@xidian.edu.cn

  • 中图分类号: TN958

DOA Estimation Algorithm Based on Reduced-dimensional Beamspace with Real-valued ESPRIT for Monostatic MIMO Radar

Funds: The Fund for Foreign Scholars in University Research and Teaching Programs(B18039)
  • 摘要: 单基地多输入多输出(MIMO)雷达的波达方向(DOA)估计问题是近年来研究的热点。高维度的MIMO雷达数据,导致传统旋转不变性参数估计技术(ESPRIT)算法需要付出较大的运算代价。在低信噪比、低快拍数的条件下,传统ESPRIT算法性能会严重下降。为了克服传统ESPRIT算法的以上缺点,该文提出一种降维波束空间的实值ESPRIT算法。该算法通过转换矩阵,将高维度MIMO雷达数据转换到低维度的数据,从而去除数据中的冗余。然后再将低维数据变换到波束空间,构造实值旋转不变性等式,用以估计目标的角度。仿真结果表明,在低信噪比和低快拍数时,相比于传统ESPRIT算法,该文所提方法具有更好的角度估计性能和更少的运算量。
  • 图  1  单基地MIMO雷达系统框图

    图  2  非相关信源RMSE随着信噪比的变化情况

    图  3  非相关信源RMSE随着快拍数的变化情况

    图  4  相干信源RMSE随着信噪比的变化情况

    图  5  相干信源RMSE随着快拍数的变化情况

    图  6  CPU的运算时间随着阵元数目的变化情况

    图  7  空域滤波器的波束方向图

    图  8  RMSE随目标角度的变化情况

  • [1] HAIMOVICH A M, BLUM R S, and CIMINI L J. MIMO Radar with Widely Separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116–129. doi: 10.1109/MSP.2008.4408448
    [2] LI Jian and STOICA P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106–114. doi: 10.1109/MSP.2007.904812
    [3] ZHAO Yongbo, SHUI Penglang, and LIU Hongwei. Computationally efficient DOA estimation for MIMO radar[C]. The 2nd International Congress on Image and Signal Processing, Tianjin, China, 2009: 1–3. doi: 10.1109/CISP.2009.5304414.
    [4] ZHANG X, HUANG Y, CHEN C, et al. Reduced-complexity Capon for direction of arrival estimation in a monostatic multiple-input multiple-output radar[J]. IET Radar, Sonar & Navigation, 2012, 6(8): 796–801. doi: 10.1049/iet-rsn.2011.0343
    [5] JINLI C, HONG G, and WEIMIN S. Angle estimation using ESPRIT without pairing in MIMO radar[J]. Electronics Letters, 2008, 44(24): 1422–1423. doi: 10.1049/el:20089089
    [6] ZHANG X and XU D. Low-complexity ESPRIT-based DOA estimation for colocated MIMO radar using reduced-dimension transformation[J]. Electronics Letters, 2011, 47(4): 283–284. doi: 10.1049/el.2010.3279
    [7] 文才, 王彤. 单基地MIMO雷达降维酉ESPRIT算法[J]. 系统工程与电子技术, 2014, 36(6): 1062–1067. doi: 10.3969/j.issn.1001-506X.2014.06.08

    WEN Cai and WANG Tong. Reduced-dimensional unitary ESPRIT algorithm for monostatic MIMO radar[J]. Systems Engineering and Electronics, 2014, 36(6): 1062–1067. doi: 10.3969/j.issn.1001-506X.2014.06.08
    [8] ZHANG Yu, ZHANG Gong, and WANG Xinhai. Computationally efficient DOA estimation for monostatic MIMO radar based on covariance matrix reconstruction[J]. Electronics Letters, 2017, 53(2): 111–113. doi: 10.1049/el.2016.3818
    [9] 徐保庆, 赵永波, 庞晓娇. 基于实值处理的联合波束域双基地MIMO雷达测角算法[J]. 电子与信息学报, 2019, 41(7): 1721–1727. doi: 10.11999/JEIT180766

    XU Baoqing, ZHAO Yongbo, and PANG Xiaojiao. Joint real-valued beamspace-based method for angle estimation in bistatic MIMO radar[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1721–1727. doi: 10.11999/JEIT180766
    [10] LI Jianfeng, HE Yi, HE Lang, et al. DOD and DOA estimation for MIMO radar based on combined MUSIC and sparse Bayesian learning[C]. 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES), Nanjing, China, 2019: 1–2. doi: 10.23919/ACES48530.2019.9060555.
    [11] YANG Zai and XIE Lihua. On gridless sparse methods for multi-snapshot DOA estimation[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016: 3236–3240. doi: 10.1109/ICASSP.2016.7472275.
    [12] YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378
    [13] WEN Fangqing, HUANG Dongmei, WANG Ke, et al. DOA estimation for monostatic MIMO radar using enhanced sparse Bayesian learning[J]. The Journal of Engineering, 2018, 2018(5): 268–273. doi: 10.1049/joe.2017.0872
    [14] MAO Chenxing and WEN Fangqing. Off-grid DOA estimation for Colocated MIMO radar via sparse Bayesian learning[C]. 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES), Nanjing, China, 2019: 1–2. doi: 10.23919/ACES48530.2019.9060628.
    [15] LIU Tingting, WEN Fangqing, ZHANG Lei, et al. Off-grid DOA estimation for Colocated MIMO radar via reduced-complexity sparse Bayesian learning[J]. IEEE Access, 2019, 7: 99907–99916. doi: 10.1109/ACCESS.2019.2930531
    [16] CHEN Fangfang, ZHANG Jinghao, and DAI Jisheng. DOD and DOA estimation for bistatic MIMO radars with sparse Bayesian learning[C]. 2018 International Workshop on Antenna Technology (iWAT), Nanjing, China, 2018: 1–4. doi: 10.1109/IWAT.2018.8379194.
    [17] ZOLTOWSKI M D, KAUTZ G M, and SILVERSTEIN S D. Beamspace root-MUSIC[J]. IEEE Transactions on Signal Processing, 1993, 41(1): 344. doi: 10.1109/TSP.1993.193151
    [18] ZOLTOWSKI M D, HAARDT M, and MATHEWS C P. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT[J]. IEEE Transactions on Signal Processing, 1996, 44(2): 316–328. doi: 10.1109/78.485927
    [19] FORSTER P and VEZZOSI G. Application of spheroidal sequences to array processing[C]. 1987 IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, USA, 1987: 2268–2271. doi: 10.1109/ICASSP.1987.1169421.
  • 加载中
图(8)
计量
  • 文章访问数:  1063
  • HTML全文浏览量:  597
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 修回日期:  2021-04-02
  • 网络出版日期:  2021-05-06
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回