高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于形态特征提取的急性下壁心肌梗死BiLSTM网络辅助诊断算法

徐文畅 何文明 游斌权 郭宇 洪凯程 陈雨行 许素玲 陈晓禾

徐文畅, 何文明, 游斌权, 郭宇, 洪凯程, 陈雨行, 许素玲, 陈晓禾. 基于形态特征提取的急性下壁心肌梗死BiLSTM网络辅助诊断算法[J]. 电子与信息学报, 2021, 43(9): 2561-2568. doi: 10.11999/JEIT200480
引用本文: 徐文畅, 何文明, 游斌权, 郭宇, 洪凯程, 陈雨行, 许素玲, 陈晓禾. 基于形态特征提取的急性下壁心肌梗死BiLSTM网络辅助诊断算法[J]. 电子与信息学报, 2021, 43(9): 2561-2568. doi: 10.11999/JEIT200480
Wenchang XU, Wenming HE, Binquan YOU, Yu GUO, Kaicheng HONG, Yuhang CHEN, Suling XU, Xiaohe CHEN. Acute Inferior Myocardial Infarction Detection Algorithm Based on BiLSTM Network of Morphological Feature Extraction[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2561-2568. doi: 10.11999/JEIT200480
Citation: Wenchang XU, Wenming HE, Binquan YOU, Yu GUO, Kaicheng HONG, Yuhang CHEN, Suling XU, Xiaohe CHEN. Acute Inferior Myocardial Infarction Detection Algorithm Based on BiLSTM Network of Morphological Feature Extraction[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2561-2568. doi: 10.11999/JEIT200480

基于形态特征提取的急性下壁心肌梗死BiLSTM网络辅助诊断算法

doi: 10.11999/JEIT200480
基金项目: 国家重点研发计划(2017YFC1001803),浙江省医药卫生重大科技计划项目(WKJ-ZJ-2012)
详细信息
    作者简介:

    徐文畅:女,1993年生,研究实习员,研究方向为信号处理、人工智能

    何文明:男,1981年生,副主任医师,研究方向为冠状动脉粥样硬化性心脏病的诊治

    游斌权:男,1970年生,主任医师,研究方向为心血管内科

    郭宇:男,1989年生,助理研究员,研究方向为电磁兼容

    洪凯程:男,1994年生,研究实习员,研究方向为信号处理、电路设计方向

    陈雨行:女,1996年生,博士生,研究方向为信号处理

    许素玲:女,1966年生,主任医师,研究方向为过敏性疾病

    陈晓禾:男,1976年生,研究员,研究方向为电磁兼容、人工智能

    通讯作者:

    陈晓禾 chenxh@sibet.ac.cn

  • 中图分类号: TP183

Acute Inferior Myocardial Infarction Detection Algorithm Based on BiLSTM Network of Morphological Feature Extraction

Funds: The National Key Research and Development Project (2017YFC1001803), The Major Science and Technology Program for Medicine and Health in Zhejiang Province (WKJ-ZJ-2012)
  • 摘要: 急性下壁心肌梗死是一种病发急、进展快、致死率高的心脏疾病,该文提出一种新颖的基于形态特征提取的BiLSTM神经网络分类的急性下壁心肌梗死辅助诊断算法,可大幅度提高医生对急性下壁心肌梗死疾病的诊断效率并有助于及时确诊。算法包括:对胸痛中心数据库心拍信号进行降噪及心拍分割;根据临床心内科医学诊断指南提取了12导联波形距离特征和分导联波形幅值特征;依据提取的特征搭建LSTM与BiLSTM神经网络进行心拍的分类识别;使用PTB公开数据库和胸痛中心数据库多临床中心进行交叉验证。实验结果表明,加入胸痛中心真实临床数据后,基于形态特征提取BiLSTM神经网络的急性下壁心肌梗死辅助诊断算法准确率达到99.72%,精度达到99.53%,灵敏度达到100.00%,同时F1-Score达到99.76。该算法比其他现有算法准确率提高至少1%,该项研究具有非常重要的临床应用价值。
  • 图  1  算法整体流程图

    图  2  异源数据信息熵值对比图

    图  3  标准心拍示意图

    图  4  分导联QRS波群定位与心拍分割算法框图

    图  5  下壁心肌梗死病例AVF导联Q波、R波、S波定位结果

    图  6  LSTM模型结构模块示意图

    图  7  LSTM网络结构图

    图  8  双向LSTM网络结构示意图

    图  9  5折交叉验证过程

    图  10  LSTM与BiLSTM神经网络的Loss曲线与Acc曲线

    表  1  特征提取说明表

    特征类型特征说明特征表示
    12导联波形距离特征RR间期${T_{{\rm{RR}}}}$
    QR间期${T_{{\rm{QR}}}}$
    ST段电位起测点${X_{{\rm{ST}}}}$
    分导联波形幅值特征Q波幅值:II, III与
    AVF导联
    ${V_{ {{\rm{Q}}_{ {\rm{II} } } } } },{V_{ {{\rm{Q}}_{ {\rm{III} } } } } },{V_{ {{\rm{Q}}_{ {\rm{AVF} } } } } }$
    R波幅值:II, III与
    AVF导联
    ${V_{ {{\rm{R}}_{ {\rm{II} } } } } },{V_{ {{\rm{R}}_{ {\rm{III} } } } } },{V_{ {{\rm{R}}_{ {\rm{AVF} } } } } }$
    下载: 导出CSV

    表  2  数据集分布情况

    数据来源心拍数/个总计训练集(80%)/个(5折交叉验证)测试集(20%)/个
    训练集(80%)/个验证集(20%)/个
    CPC81118111159289363
    PTB1000
    下载: 导出CSV

    表  3  网络模型参数

    网络模型参数
    LSTMEpoch=1200
    Maxiters=1000
    Learining rate=0.00035
    Forget bias=1.0
    BiLSTMEpoch=1000
    Maxiters=1000
    Learining rate=0.001
    Forget bias=0.6
    下载: 导出CSV

    表  4  5折交叉验证分类评估指标值

    本文算法评估指标验证集D1验证集D2验证集D3验证集D4验证集D5平均值
    形态特征提取+LSTM混淆矩阵TNFN12311253117112811111NA
    FPTP11653159117121581176
    Acc(%)99.3197.9399.3198.9699.3198.96
    precision(%)99.4098.1599.4298.7599.4499.03
    sensitivity(%)99.4098.1599.4299.3799.4499.16
    F1-Score($\beta = 1$)99.4098.1599.4299.0699.4499.09
    形态特征提取+BiLSTM混淆矩阵TNFN12901141117213111160NA
    FPTP01611174316811560173
    Acc(%)100.0099.3198.2899.31100.0099.38
    precision(%)100.0099.4398.2599.36100.0099.41
    sensitivity(%)100.0099.4398.8299.36100.0099.52
    F1-Score($\beta = 1$)100.0099.4398.5399.36100.0099.46
    下载: 导出CSV

    表  5  模型测试集分类评估指标值

    本文算法混淆矩阵Acc(%)precision(%)sensitivity(%)F1-Score($\beta = 1$)
    形态特征提取+LSTM152398.9099.5298.5799.04
    1207
    形态特征提取+BiLSTM152099.7299.53100.0099.76
    1210
    下载: 导出CSV

    表  6  急性心肌梗死智能诊断方法比较

    作者,年份分类方法导联数量结果
    Dohare et al., 2018[7]形态特征提取,SVM分类12心梗检测:Acc = 96.66%, sensitivity= 96.6%
    Acharya et al., 2016[8]离散小波变换,非线性特征提取,KNN分类12心梗部位检测:Acc = 98.74%, sensitivity= 99.55%
    Safdarian N, 2014[18]ANN, PNN, KNN, 多层感知器分类12心梗部位检测:Acc = 76%
    Sharma L D, 2018[19]平稳小波变换,KNN分类3心梗部位检测:下壁Acc = 98.69%, sensitivity= 98.67%
    平稳小波变换,SVM分类3心梗部位检测:下壁Acc = 98.84%, sensitivity= 99.35%
    本文所提多导联形态特征提取,LSTM网络分类3心梗部位检测:下壁Acc = 98.90%, sensitivity= 98.57%
    多导联形态特征提取,BiLSTM网络分类3心梗部位检测:下壁Acc = 99.72%, sensitivity= 100.00%
    下载: 导出CSV
  • [1] ANAND S S and YUSUF S. Stemming the global tsunami of cardiovascular disease[J]. The Lancet, 2011, 377(9765): 529–532. doi: 10.1016/S0140-6736(10)62346-X
    [2] RAJPURKAR P, HANNUN A Y, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks[J]. arXiv preprint arXiv: 1707.01836, 2017.
    [3] OH S L, NG E Y K, TAN R S, et al. Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types[J]. Computers in Biology and Medicine, 2019, 105: 92–101. doi: 10.1016/j.compbiomed.2018.12.012
    [4] CHAUHAN S and VIG L. Anomaly detection in ECG time signals via deep long short-term memory networks[C]. 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Paris, France, 2015.
    [5] MARTIS R J, ACHARYA U R, and MIN L C. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform[J]. Biomedical Signal Processing and Control, 2013, 8(5): 437–448. doi: 10.1016/j.bspc.2013.01.005
    [6] HARALDSSON H, EDENBRANDT L, and OHLSSON M. Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions and neural networks[J]. Artificial Intelligence in Medicine, 2004, 32(2): 127–136. doi: 10.1016/j.artmed.2004.01.003
    [7] DOHARE A K, KUMAR V, and KUMAR R. Detection of myocardial infarction in 12 lead ECG using support vector machine[J]. Applied Soft Computing, 2018, 64: 138–147. doi: 10.1016/j.asoc.2017.12.001
    [8] ACHARYA U R, FUJITA H, SUDARSHAN V K, et al. Automated detection and localization of myocardial infarction using electrocardiogram: A comparative study of different leads[J]. Knowledge-Based Systems, 2016, 99: 146–156. doi: 10.1016/j.knosys.2016.01.040
    [9] GOLDBERGER A L, AMARAL L A, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): E215–E220. doi: 10.1161/01.CIR.101.23.e215
    [10] KONG Dongdong, ZHU Junjiang, WU Shangshi, et al. A novel IRBF-RVM model for diagnosis of atrial fibrillation[J]. Computer Methods and Programs in Biomedicine, 2019, 177: 183–192. doi: 10.1016/j.cmpb.2019.05.028
    [11] 中华医学会心血管病学分会, 中华心血管病杂志编辑委员会. 急性ST段抬高型心肌梗死诊断和治疗指南[J]. 中华心血管病杂志, 2015, 43(5): 380–393. doi: 10.3760/cma.j.issn.0253-3758.2015.05.003

    Chinese Medical Association division of Cardiology and Editorial Board of The Chinese Journal of Cardiovascular Medicine. Guidelines for the diagnosis and treatment of acute ST-segment elevation myocardial infarction[J]. Chinese Journal of Cardiology, 2015, 43(5): 380–393. doi: 10.3760/cma.j.issn.0253-3758.2015.05.003
    [12] CHEN Riqing, HUANG Yingsong, and WU Jian. Multi-window detection for P-wave in electrocardiograms based on bilateral accumulative area[J]. Computers in Biology and Medicine, 2016, 78: 65–75. doi: 10.1016/j.compbiomed.2016.09.012
    [13] MINCHOLÉ A, JAGER F, and LAGUNA P. Discrimination between ischemic and artifactual ST segment events in Holter recordings[J]. Biomedical Signal Processing and Control, 2010, 5(1): 21–31. doi: 10.1016/j.bspc.2009.09.001
    [14] 柯丽, 王丹妮, 杜强, 等. 基于卷积长短时记忆网络的心律失常分类方法[J]. 电子与信息学报, 2020, 42(8): 1990–1998. doi: 10.11999/JEIT190712

    KE Li, WANG Danni, DU Qiang, et al. Arrhythmia classification based on convolutional long short term memory network[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1990–1998. doi: 10.11999/JEIT190712
    [15] SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85–117. doi: 10.1016/j.neunet.2014.09.003
    [16] 田生伟, 周兴发, 禹龙, 等. 基于双向LSTM的维吾尔语事件因果关系抽取[J]. 电子与信息学报, 2018, 40(1): 200–208. doi: 10.11999/JEIT170402

    TIAN Shengwei, ZHOU Xingfa, YU Long, et al. Causal relation extraction of Uyghur events based on bidirectional long short-term memory model[J]. Journal of Electronics &Information Technology, 2018, 40(1): 200–208. doi: 10.11999/JEIT170402
    [17] SHARMA L D and SUNKARIA R K. Myocardial infarction detection and localization using optimal features based lead specific approach[J]. IRBM, 2020, 41(1): 58–70. doi: 10.1016/j.irbm.2019.09.003
    [18] SAFDARIAN N, DABANLOO N J, and ATTARODI G. A new pattern recognition method for detection and localization of myocardial infarction using T-wave integral and total integral as extracted features from one cycle of ECG signal[J]. Journal of Biomedical Science and Engineering, 2014, 7(10): 818–824. doi: 10.4236/jbise.2014.710081
    [19] SHARMA L D and SUNKARIA R K. Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach[J]. Signal, Image and Video Processing, 2018, 12(2): 199–206. doi: 10.1007/s11760-017-1146-z
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  1413
  • HTML全文浏览量:  879
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 修回日期:  2020-12-16
  • 网络出版日期:  2021-01-05
  • 刊出日期:  2021-09-16

目录

    /

    返回文章
    返回