高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型自适应广义特征向量估计算法及其特性分析

徐中英 高迎彬 孔祥玉

徐中英, 高迎彬, 孔祥玉. 新型自适应广义特征向量估计算法及其特性分析[J]. 电子与信息学报, 2022, 44(1): 254-260. doi: 10.11999/JEIT200477
引用本文: 徐中英, 高迎彬, 孔祥玉. 新型自适应广义特征向量估计算法及其特性分析[J]. 电子与信息学报, 2022, 44(1): 254-260. doi: 10.11999/JEIT200477
XU Zhongying, GAO Yingbin, KONG Xiangyu. Novel Adaptive Generalized Eigenvector Estimation Algorithm and Its Characteristic Analysis[J]. Journal of Electronics & Information Technology, 2022, 44(1): 254-260. doi: 10.11999/JEIT200477
Citation: XU Zhongying, GAO Yingbin, KONG Xiangyu. Novel Adaptive Generalized Eigenvector Estimation Algorithm and Its Characteristic Analysis[J]. Journal of Electronics & Information Technology, 2022, 44(1): 254-260. doi: 10.11999/JEIT200477

新型自适应广义特征向量估计算法及其特性分析

doi: 10.11999/JEIT200477
基金项目: 国家自然科学基金(62106242, 62101579, 61903375),陕西省自然科学基金(2020JM-356)
详细信息
    作者简介:

    徐中英:男,1978年生,副教授,研究方向为数据分析和信号处理

    高迎彬:男,1986年生,工程师,研究方向为自适应信号处理

    孔祥玉:男,1967年生,教授,研究方向为故障诊断、自适应信号处理和系统建模

    通讯作者:

    高迎彬 welcome8793@sina.com

  • 中图分类号: TN911.7; TP391

Novel Adaptive Generalized Eigenvector Estimation Algorithm and Its Characteristic Analysis

Funds: The National Natural Science Foundation of China (62106242, 62101579, 61903375), The Natural Science Foundation of Shaanxi Province (2020JM-356)
  • 摘要: 为了发展快速稳定的广义特征向量估计算法,该文提出基于神经网络的新型单维广义特征向量估计算法;通过分析该算法的所有平衡点证明了当且仅当神经网络权向量等于最小广义特征值对应的广义特征向量时该算法达到稳定状态;利用确定性离散时间分析方法完成了所提算法的动态特性分析,给出了保证算法收敛的边界条件;通过膨胀技术将单维算法扩展为多维广义特征向量估计算法,该算法可以根据实际需要增加提取广义特征向量的数量。仿真实验表明所提算法具有很好地收敛性,而且收敛速度优于一些现有算法。
  • 图  1  权向量各元素的运动曲线

    图  2  3个算法的方向余弦曲线

    图  3  4个广义特征向量的方向余弦曲线

    图  4  权向量的分量曲线

    表  1  多维广义特征向量估计步骤

     初始化:设置学习因子$\eta $和广义特征值上界$\sigma $,产生初始化权向量${\boldsymbol{w}}(0)$
     迭代计算:令$d = 1,2, \cdots ,r$,其中$r$为需要估计广义特征向量的个数
     步骤1:令$d = 1$,利用式(5)估计出第1个广义特征向量${{\boldsymbol{\bar v}}_n}$;
     步骤2:令$d = d + 1$,利用式(11)计算出第$d$个广义特征向量${{\boldsymbol{\bar v}}_{n - d + 1}}$
            $ {{\boldsymbol{w}}_d}(k + 1) = {{\boldsymbol{w}}_d}(k) + \eta \left[ { - \left( {2{\boldsymbol{w}}_d^{\rm{T}}(k){{\boldsymbol{R}}_x}{{\boldsymbol{w}}_d}(k) - 1} \right){\boldsymbol{R}}_x^{ - 1}{{\boldsymbol{R}}_{d,y}}{{\boldsymbol{w}}_d}(k) + {\boldsymbol{w}}_d^{\rm{T}}(k){{\boldsymbol{R}}_{d,y}}{{\boldsymbol{w}}_d}(k){{\boldsymbol{w}}_d}(k)} \right] $        (11)
     其中
                        $ {{\boldsymbol{R}}_{d,y}} = {{\boldsymbol{R}}_y} + \sigma \displaystyle\sum\limits_{d = 1}^{d - 1} {{{\boldsymbol{R}}_x}{{{\boldsymbol{\bar v}}}_{n - d + 2}}{\boldsymbol{\bar v}}_{n - d + 2}^{\rm{T}}{{\boldsymbol{R}}_x}} $                     (12)
     步骤3:重复步骤2,直到$d = r$。
    下载: 导出CSV
  • [1] CAI Haoyuan, KALOORAZI M F, CHEN Jie, et al. Online dominant generalized eigenvectors extraction via a randomized method[C]. 28th European Signal Processing Conference, Amsterdam, Netherlands, 2021: 2353–2357.
    [2] ZHANG Weitao, LOU Shuntian, and FENG Dazheng. Adaptive quasi-Newton algorithm for source extraction via CCA approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4): 677–689. doi: 10.1109/TNNLS.2013.2280285
    [3] UCHIDA K and YAMADA I. An ℓ1-penalized adaptive normalized quasi-newton algorithm for sparsity-aware generalized Eigen-subspace tracking[J]. Journal of the Franklin Institute, 2020, 357(8): 5033–5057. doi: 10.1016/j.jfranklin.2020.03.034
    [4] 沈海鸥, 王布宏, 刘新波. 基于酉变换-矩阵束的稀布线阵方向图综合[J]. 电子与信息学报, 2016, 38(10): 2667–2673.

    SHEN Haiou, WANG Buhong, and LIU Xinbo. Sparse array pattern synthesis using unitary transformation matrix pencil method[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2667–2673.
    [5] GAO Yingbin, KONG Xiangyu, ZHANG Zhengxin, et al. An adaptive self-stabilizing algorithm for minor generalized eigenvector extraction and its convergence analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 4869–4881. doi: 10.1109/TNNLS.2017.2783360
    [6] KONG Xiangyu, HU Changhua, and DUAN Zhansheng. Principal Component Analysis Networks and Algorithms[M]. Singapore: Springer, 2017.
    [7] LIU Lijun, SHAO Hongmei, and NAN Dong. Recurrent neural network model for computing largest and smallest generalized eigenvalue[J]. Neurocomputing, 2008, 71(16/18): 3589–3594.
    [8] YANG Jian, HU Han, and XI Hongsheng. Weighted non-linear criterion-based adaptive generalised eigendecomposition[J]. IET Signal Processing, 2013, 7(4): 285–295. doi: 10.1049/iet-spr.2012.0212
    [9] YANG Jian, XI Hongsheng, YANG Feng, et al. RLS-based adaptive algorithms for generalized Eigen-decomposition[J]. IEEE Transactions on Signal Processing, 2006, 54(4): 1177–1188. doi: 10.1109/TSP.2005.863040
    [10] ATTALLAH S and ABED-MERAIM K. A fast adaptive algorithm for the generalized symmetric eigenvalue problem[J]. IEEE Signal Processing Letters, 2008, 15: 797–800. doi: 10.1109/LSP.2008.2006346
    [11] TANAKA T. Fast generalized eigenvector tracking based on the power method[J]. IEEE Signal Processing Letters, 2009, 16(11): 969–972. doi: 10.1109/LSP.2009.2027667
    [12] NGUYEN T D, TAKAHASHI N, and YAMADA I. An adaptive extraction of generalized eigensubspace by using exact nested orthogonal complement structure[J]. Multidimensional Systems and Signal Processing, 2013, 24(3): 457–483. doi: 10.1007/s11045-012-0172-9
    [13] LI Hongzeng, DU Boyang, KONG Xiangyu, et al. A generalized minor component extraction algorithm and its analysis[J]. IEEE Access, 2018, 6: 36771–36779. doi: 10.1109/ACCESS.2018.2852060
    [14] 孔祥玉, 冯晓伟, 胡昌华. 广义主成分分析算法及应用[M]. 北京: 国防工业出版社, 2018.

    KONG Xiangyu, FENG Xiaowei, and HU Changhua. General Principal Component Analysis and Application[M]. Beijing: National Defense Industry Press, 2018.
    [15] FENG Xiaowei, KONG Xiangyu, DUAN Zhansheng, et al. Adaptive generalized Eigen-pairs extraction algorithms and their convergence analysis[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2976–2989. doi: 10.1109/TSP.2016.2537260
    [16] KUSHNER H J and CLARK D S. Stochastic Approximation Methods for Constrained and Unconstrained Systems[M]. New York: Springer, 1978.
    [17] NGUYEN T D and YAMADA I. A unified convergence analysis of normalized PAST algorithms for estimating principal and minor components[J]. Signal Processing, 2013, 93(1): 176–184. doi: 10.1016/j.sigpro.2012.07.020
    [18] NGUYEN T D and YAMADA I. Necessary and sufficient conditions for convergence of the DDT systems of the Normalized PAST algorithms[J]. Signal Processing, 2014, 94: 288–299. doi: 10.1016/j.sigpro.2013.06.017
    [19] O’REGAN G. Matrix theory[M]. O’REGAN G. Guide to Discrete Mathematics: An Accessible Introduction to the History, Theory, Logic and Applications. Cham: Springer, 2016: 127–139.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  108
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-12
  • 修回日期:  2021-09-01
  • 网络出版日期:  2021-11-02
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回