高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相参处理间隔较短条件下基于稀疏重构及形态成分分析的航管雷达风电场杂波抑制

何炜琨 毕峰华 王晓亮 张莹

何炜琨, 毕峰华, 王晓亮, 张莹. 相参处理间隔较短条件下基于稀疏重构及形态成分分析的航管雷达风电场杂波抑制[J]. 电子与信息学报, 2021, 43(7): 1954-1961. doi: 10.11999/JEIT200474
引用本文: 何炜琨, 毕峰华, 王晓亮, 张莹. 相参处理间隔较短条件下基于稀疏重构及形态成分分析的航管雷达风电场杂波抑制[J]. 电子与信息学报, 2021, 43(7): 1954-1961. doi: 10.11999/JEIT200474
Weikun HE, Fenghua BI, Xiaoliang WANG, Ying ZHANG. Clutter Suppression of Wind Farm Based on Sparse Reconstruction and Morphological Component Analysis for ATC Radar under Short Coherent Processing Interval Condition[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1954-1961. doi: 10.11999/JEIT200474
Citation: Weikun HE, Fenghua BI, Xiaoliang WANG, Ying ZHANG. Clutter Suppression of Wind Farm Based on Sparse Reconstruction and Morphological Component Analysis for ATC Radar under Short Coherent Processing Interval Condition[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1954-1961. doi: 10.11999/JEIT200474

相参处理间隔较短条件下基于稀疏重构及形态成分分析的航管雷达风电场杂波抑制

doi: 10.11999/JEIT200474
基金项目: 国家自然科学基金委员会与民航局联合资助项目(U1533110),中央高校基本科研业务费项目中国民航大学专项资助(3122018D011),天津市自然科学基金(19JCQNJC01000)
详细信息
    作者简介:

    何炜琨:女,1977年生,教授,研究方向为雷达信号处理、风电场杂波抑制

    毕峰华:男,1995年生,硕士生,研究方向为风电场杂波抑制

    王晓亮:男,1982年生,副教授,研究方向为雷达信号处理、图像处理与识别

    张莹:女,1996年生,硕士生,研究方向为机载雷达风电场杂波抑制

    通讯作者:

    何炜琨 hwkcauc@126.com

  • 中图分类号: TN958.3

Clutter Suppression of Wind Farm Based on Sparse Reconstruction and Morphological Component Analysis for ATC Radar under Short Coherent Processing Interval Condition

Funds: The National Natural Science Foundation of China and the Civil Aviation Administration of China (U1533110), The Special Funding from the Civil Aviation University of China for the Basic Research Business Fee Project of Central Universities (3122018D011), The Natural Science Foundation of Tianjin (19JCQNJC01000)
  • 摘要: 近些年来,世界各国越来越重视风力发电的发展。风电场的存在可能对航管监视雷达性能产生负面影响,因此风电场杂波抑制技术的研究对于提升航管监视雷达工作性能、保障空中交通安全具有重大意义。形态成分分析(MCA)算法根据信号稀疏特征的不同应用于风电场杂波抑制时,计算量较低且性能较好。但是针对实际雷达参数中相参处理间隔(CPI)较短造成的谱分辨率降低及信号特征不明显时,MCA算法的杂波抑制性能受到影响,因此选择将稀疏重构算法与MCA算法结合用于短CPI情况下的风电场杂波抑制。该文认为短CPI接收回波数据为较长CPI雷达回波数据基础上发生尾部数据缺省,继而利用稀疏重构算法对缺省数据进行恢复,再利用MCA算法抑制风电场杂波。实验结果验证了该方法的有效性。
  • 图  1  基于稀疏重构及MCA算法的风电场杂波抑制实现框图

    图  2  MP及MCA算法的杂波分离(抑制)结果

    图  3  MP及MCA算法的杂波分离(抑制)结果

    图  4  传统MCA算法和本文方法仿真结果

    图  5  传统MCA算法和本文方法实测结果

    表  1  ALM迭代求解算法

     初始化:$\mu > 0,d$
     迭代优化:
     ${w_1} \leftarrow \mathop {\arg \min }\limits_{{w_1}} \lambda {\left\| {{w_1}} \right\|_1} + 1/2 \cdot \mu \left\| {{w_1} - {x_1} - d} \right\|_2^2$      (8)
     ${x_1} \leftarrow \mathop {\arg \min }\limits_{ {x_1} } \left\| { {w_1} - {x_1} - d} \right\|_2^2\ \ {\rm{s.t} }.{Y_1} = {{{S}}_1}{{A}}{x_1}$      (9)
     $d \leftarrow d - ({w_1} - {x_1})$
     直到收敛结束
    下载: 导出CSV

    表  2  对应化简求解算法

     初始化:$\mu > 0,d$
     迭代优化:
     ${w_1} \leftarrow {\rm{soft}}({x_1} + d,\lambda /\mu )$                (10)
     ${x_1} \!\!\leftarrow\!\! ({w_1} \!\!-\! d) \!\!+\! {\left(\! { { {{S} }_1}{{A} } } \right)^{\rm{H} } }\!{\left[\! { { {{S} }_1}{{A} }{ {({ {{S} }_1}{{A} })}^{\rm{H} } } } \right]^{ - 1} }\!\!\left[ { {Y_1} \!-\! { {{S} }_1}{{A} }({w_1} \!-\! d)} \right]$ (11)
     $d \leftarrow d - ({w_1} - {x_1})$
     直到收敛结束
    下载: 导出CSV

    表  3  最终求解算法

     初始化:$\mu > 0,d$
     迭代优化:
     ${v_1} \leftarrow {\rm{soft}}({x_1} + d,\lambda /\mu ) - d$               (13)
     $d \leftarrow \dfrac{1}{p}{ {{A} }^{\rm{H} } }\left( { {Y_1} - {{{S}}_1}{{A} }{v_1} } \right)$                (14)
     ${x_1} \leftarrow {v_1} + d$
     直到收敛结束
    下载: 导出CSV

    表  4  雷达参数

    雷达参数数值
    载频2.9 GHz
    脉冲重复间隔(PRI)3000 μs
    带宽0.75 MHz
    脉冲宽度270 μs
    方位扫描间隔0.7°
    相干脉冲数6
    信噪比(SNR)10 dB
    下载: 导出CSV

    表  5  风轮机参数

    风轮机参数数值
    叶片数目3
    叶片长度34.4 m
    旋转面与雷达波束夹角84°
    单个叶片与雷达波束初始夹角90°
    转速17 r/min
    杂噪比(CNR)20 dB
    下载: 导出CSV

    表  6  实测数据相关参数

    参数数值
    PRI3230 μs
    带宽0.75 MHz
    脉冲宽度270 μs
    采样率2 MHz
    方位扫描间隔0.7°
    相干脉冲数6
    下载: 导出CSV
  • [1] 付秋顺. 世界风电行业发展状况分析[J]. 科学技术创新, 2012(7): 106. doi: 10.3969/j.issn.1673-1328.2012.07.124

    FU Qiushun. Analysis on the development status of the world wind power industry[J]. Scientific and Technological Innovation, 2012(7): 106. doi: 10.3969/j.issn.1673-1328.2012.07.124
    [2] THEIL A, SCHOUTEN M W, and DE JONG A. Radar and wind turbines: A guide to acceptance criteria[C]. 2010 IEEE Radar Conference, Washington, USA, 2010: 1355–1361. doi: 10.1109/RADAR.2010.5494405.
    [3] 中国可再生能源学会风能专业委员会(CWEA). 2018年中国风电吊装容量统计简报[EB/OL]. http://www.nengyuanjie.net/article/25445.html, 2019.

    China Wind Energy Association (CWEA). 2018 China wind power lifting capacity statistics bulletin[EB/OL]. http://www.nengyuanjie.net/article/25445.html, 2019.
    [4] KONG Fanxing, ZHANG Yan, and PALMER R. Characterization of micro-Doppler radar signature of commercial wind turbines[C]. SPIE 9077, Radar Sensor Technology XVIII, Baltimore, USA, 2014: 1–8. doi: 10.1117/12.2050029.
    [5] KRASNOV O A and YAROVOY A G. Polarimetric micro-Doppler characterization of wind turbines[C].The 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 2016: 1–5. doi: 10.1109/EuCAP.2016.7481496.
    [6] PIDANIC J, JURYCA K, and SUHARTANTO H. The modelling of wind turbine influence in the primary radar systems[C]. 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Bali, Indonesia, 2017: 47–52. doi: 10.1109/ICACSIS.2017.8355011.
    [7] WANG Jian, LOK Y F, HUBBARD O, et al. Impact of wind turbines on ATC radars and mitigation results[C]. 2013 IEEE Radar Conference (RadarCon13), Ottawa, Canada, 2013: 1–4. doi: 10.1109/RADAR.2013.6586095.
    [8] 何炜琨, 吴仁彪, 王晓亮, 等. 风电场对雷达设备的影响评估与干扰抑制技术研究现状与展望[J]. 电子与信息学报, 2017, 39(7): 1748–1758. doi: 10.11999/JEIT161004

    HE Weikun, WU Renbiao, WANG Xiaoliang, et al. The review and prospect on the influence evaluation and interference suppression of wind farms on the radar equipment[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1748–1758. doi: 10.11999/JEIT161004
    [9] THEIL A and VAN EWIJK L J. Radar performance degradation due to the presence of wind turbines[C]. 2007 IEEE Radar Conference, Boston, USA, 2007: 75–80. doi: 10.1109/RADAR.2007.374194.
    [10] NAQVI A and LING Hao. Signal filtering technique to remove Doppler clutter caused by wind turbines[J]. Microwave and Optical Technology Letters, 2012, 54(6): 1455–1460. doi: 10.1002/mop.26819
    [11] 曹永贵, 方宇, 吴道庆. 基于OMP算法的风轮机杂波滤除研究[J]. 现代雷达, 2019, 41(5): 16–21. doi: 10.16592/j.cnki.1004-7859.2019.05.004

    CAO Yonggui, FANG Yu, and WU Daoqing. A study on wind turbine clutter mitigation based on OMP algorithm[J]. Modern Radar, 2019, 41(5): 16–21. doi: 10.16592/j.cnki.1004-7859.2019.05.004
    [12] KARABAYIR O, UNAL M, COSKUN A F, et al. CLEAN based wind turbine clutter mitigation approach for pulse-Doppler radars[C]. 2015 IEEE Radar Conference (RadarCon), Arlington, USA, 2015: 1541–1544. doi: 10.1109/RADAR.2015.7131241.
    [13] 吴仁彪, 毛建, 王晓亮, 等. 航管一次雷达抗风电场干扰目标检测方法[J]. 电子与信息学报, 2013, 35(3): 754–758. doi: 10.3724/SP.J.1146.2012.00923

    WU Renbiao, MAO Jian, WANG Xiaoliang, et al. Target detection of primary surveillance radar in wind farm clutter[J]. Journal of Electronics &Information Technology, 2013, 35(3): 754–758. doi: 10.3724/SP.J.1146.2012.00923
    [14] 何炜琨, 窄秋苹, 郭双双, 等. 基于微多普勒特征的风轮机雷达杂波检测[J]. 信号处理, 2017, 33(4): 496–504. doi: 10.16798/j.issn.1003-0530.2017.04.006

    HE Weikun, ZHAI Qiuping, GUO Shuangshuang, et al. Wind turbine radar clutter detection based on micro-Doppler feature[J]. Journal of Signal Processing, 2017, 33(4): 496–504. doi: 10.16798/j.issn.1003-0530.2017.04.006
    [15] UYSAL F, SELESNICK I, PILLAI U, et al. Dynamic clutter mitigation using sparse optimization[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(7): 37–49. doi: 10.1109/MAES.2014.130137
    [16] 夏鹏, 田西兰. 基于形态分量分析的风力发电机杂波抑制方法[J]. 空军预警学院学报, 2017, 31(6): 398–402. doi: 10.3969/j.issn.2095-5839.2017.06.003

    XIA Peng and TIAN Xilan. Wind turbine clutter rejection based on morphological component analysis[J]. Journal of Air Force Early Warning Academy, 2017, 31(6): 398–402. doi: 10.3969/j.issn.2095-5839.2017.06.003
    [17] AFONSO M V, BIOUCAS-DIAS J M, and FIGUEIREDO M A T. Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing, 2010, 19(9): 2345–2356. doi: 10.1109/TIP.2010.2047910
    [18] IVAN S. L1-norm penalized least squares with salsa[EB/OL]. https://eeweb.engineering.nyu.edu/iselesni/lecture_notes/SALSA/SALSA.pdf.
    [19] BAI Xueru, ZHOU Feng, and HUI Ye. Obtaining JTF-signature of space-debris from incomplete and phase-corrupted data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1169–1180. doi: 10.1109/TAES.2017.2667899
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  915
  • HTML全文浏览量:  325
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-12
  • 修回日期:  2020-12-06
  • 网络出版日期:  2020-12-14
  • 刊出日期:  2021-07-10

目录

    /

    返回文章
    返回