高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维空变运动补偿的机动平台大斜视SAR稀疏自聚焦方法

李根 马彦恒 熊旭颖

李根, 马彦恒, 熊旭颖. 基于二维空变运动补偿的机动平台大斜视SAR稀疏自聚焦方法[J]. 电子与信息学报, 2021, 43(7): 1992-1999. doi: 10.11999/JEIT200456
引用本文: 李根, 马彦恒, 熊旭颖. 基于二维空变运动补偿的机动平台大斜视SAR稀疏自聚焦方法[J]. 电子与信息学报, 2021, 43(7): 1992-1999. doi: 10.11999/JEIT200456
Gen LI, Yanheng MA, Xuying XIONG. Sparse Autofocus Method for Maneuvering Platform High-squint SAR Based on Two-dimensional Spatial-variant Motion Compensation[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1992-1999. doi: 10.11999/JEIT200456
Citation: Gen LI, Yanheng MA, Xuying XIONG. Sparse Autofocus Method for Maneuvering Platform High-squint SAR Based on Two-dimensional Spatial-variant Motion Compensation[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1992-1999. doi: 10.11999/JEIT200456

基于二维空变运动补偿的机动平台大斜视SAR稀疏自聚焦方法

doi: 10.11999/JEIT200456
详细信息
    作者简介:

    李根:男,1991年生,博士生,研究方向为机动平台大斜视SAR成像和压缩感知雷达成像

    马彦恒:男,1968年生,教授,博士生导师,研究方向为机动SAR成像、低小慢目标探测等

    熊旭颖:女,1998年生,硕士生,研究方向为SAR的运动补偿

    通讯作者:

    马彦恒 mamyh11@126.com

  • 中图分类号: TN958

Sparse Autofocus Method for Maneuvering Platform High-squint SAR Based on Two-dimensional Spatial-variant Motion Compensation

  • 摘要: 大斜视角和空间3维加速度的存在使机动平台SAR的运动误差具有明显的2维空变性,极大地增加了成像难度。为此,该文提出了一种基于2维空变运动误差估计与补偿的稀疏自聚焦方法。该方法基于Keystone变换和频域相位滤波法构造了能够校正成像参数空变性的频域近似观测算子。在自聚焦过程中,首先,构建基于频域近似观测算子的稀疏自聚焦模型并采用迭代软阈值方法(ISTA)进行求解,从而实现图像的粗聚焦和非空变运动误差的估计;然后,采用稀疏自聚焦模型估计多个子区域的精确相位误差曲线,并基于最小二乘法估计空变的运动误差参数;最后,通过对近似观测算子的修正实现空变运动误差的补偿。仿真实验验证了该方法的有效性。
  • 图  1  机动平台大斜SAR频域成像处理流程

    图  2  机动平台大斜视SAR稀疏自聚焦方法流程

    图  3  仿真场景和3维运动误差曲线

    图  4  全采样数据下的场景1成像结果对比

    图  5  场景1局部区域成像结果

    图  6  欠采样数据下的场景2成像结果对比

    表  1  仿真参数

    参数数值参数数值
    载频17 GHz地面斜视角60°
    距离带宽300 MHz平台高度4 km
    合成孔径时间3 s中心斜距12 km
    脉冲宽度5 μs速度(150, 0, –30) m/s
    脉冲重复频率1 kHz加速度(2.2, 1.1, –1.8) m/s2
    下载: 导出CSV

    表  2  场景1成像结果量化分析结果

    成像方法对比度
    WPGA14.583.95
    稀疏自聚焦14.426.82
    本文方法14.317.02
    下载: 导出CSV
  • [1] 李宁, 别博文, 邢孟道, 等. 基于多普勒重采样的恒加速度大斜视SAR成像算法[J]. 电子与信息学报, 2019, 41(12): 2873–2880. doi: 10.11999/JEIT180953

    LI Ning, BIE Bowen, XING Mengdao, et al. A doppler resampling based imaging algorithm for high squint SAR with constant acceleration[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2873–2880. doi: 10.11999/JEIT180953
    [2] HOU Jianqiang, MA Yanheng, and LI Gen. A third-order range separation imaging algorithm for manoeuvring platform SAR[J]. Remote Sensing Letters, 2019, 10(8): 786–795. doi: 10.1080/2150704X.2019.1610982
    [3] LI Gen, MA Yanheng, SHI Lin, et al. KT and azimuth sub-region deramp-based high-squint SAR imaging algorithm mounted on manoeuvring platforms[J]. IET Radar, Sonar & Navigation, 2020, 14(3): 388–398. doi: 10.1049/iet-rsn.2019.0251
    [4] 李根, 马彦恒, 侯建强, 等. 基于Keystone变换和扰动重采样的机动平台大斜视SAR成像方法[J]. 电子与信息学报, 2020, 42(10): 2485–2492. doi: 10.11999/JEIT190831

    LI Gen, MA Yanheng, HOU Jianqiang, et al. Maneuvering platform high-squint SAR imaging method based on Keystone transform and perturbation resampling[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2485–2492. doi: 10.11999/JEIT190831
    [5] WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752
    [6] FIENUP J R and MILLER J J. Aberration correction by maximizing generalized sharpness metrics[J]. Journal of the Optical Society of America A, 2003, 20(4): 609–620. doi: 10.1364/JOSAA.20.000609
    [7] DE MACEDO K A C, SCHEIBER R, and MOREIRA A. An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3151–3162. doi: 10.1109/TGRS.2008.924004
    [8] LI Yake and O’YOUNG S. Kalman filter disciplined phase gradient autofocus for stripmap SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6298–6308. doi: 10.1109/TGRS.2020.2976655
    [9] LIANG Yi, LI Guofei, WEN Jun, et al. A fast time-domain SAR imaging and corresponding autofocus method based on hybrid coordinate system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8627–8640. doi: 10.1109/TGRS.2019.2921917
    [10] PU Wei, WU Junjie, HUANG Yulin, et al. Fast factorized backprojection imaging algorithm integrated with motion trajectory estimation for bistatic forward-looking SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(10): 3949–3965. doi: 10.1109/JSTARS.2019.2945118
    [11] YANG Jungang, HUANG Xiaotao, THOMPSON J, et al. Compressed sensing radar imaging with compensation of observation position error[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4608–4620. doi: 10.1109/TGRS.2013.2283054
    [12] LI Bo, LIU Falin, ZHOU Chongbin, et al. Phase error correction for approximated observation-based compressed sensing radar imaging[J]. Sensors, 2017, 17(3): 613. doi: 10.3390/s17030613
    [13] PU Wei, WU Junjie, WANG Xiaodong, et al. Joint sparsity-based imaging and motion error estimation for BFSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1393–1408. doi: 10.1109/TGRS.2018.2866437
    [14] ONHON N Ö and CETIN M. A sparsity-driven approach for joint SAR imaging and phase error correction[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2075–2088. doi: 10.1109/TIP.2011.2179056
    [15] 李震宇, 梁毅, 邢孟道, 等. 一种大斜视SAR俯冲段频域相位滤波成像算法[J]. 电子学报, 2015, 43(10): 2014–2021. doi: 10.3969/j.issn.0372-2112.2015.10.020

    LI Zhenyu, LIANG Yi, XING Mengdao, et al. A frequency phase filtering imaging algorithm for high-squint SAR in diving movement[J]. Acta Electronica Sinica, 2015, 43(10): 2014–2021. doi: 10.3969/j.issn.0372-2112.2015.10.020
    [16] 别博文, 梁毅, 党彦锋, 等. 曲线轨迹SAR大斜视子孔径成像算法[J]. 系统工程与电子技术, 2017, 39(3): 500–505. doi: 10.3969/j.issn.1001-506X.2017.03.07

    BIE Bowen, LIANG Yi, DANG Yanfeng, et al. Sub-aperture imaging algorithm for high squint SAR with curvilinear flight tracks[J]. Systems Engineering and Electronics, 2017, 39(3): 500–505. doi: 10.3969/j.issn.1001-506X.2017.03.07
    [17] 李根, 马彦恒, 侯建强, 等. 基于子孔径Keystone变换的曲线轨迹大斜视SAR回波模拟[J]. 电子与信息学报, 2020, 42(9): 2261–2268. doi: 10.11999/JEIT190674

    LI Gen, MA Yanheng, HOU Jianqiang, et al. Sub-aperture Keystone transform based echo simulation method for high-squint SAR with a curve trajectory[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2261–2268. doi: 10.11999/JEIT190674
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1366
  • HTML全文浏览量:  532
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-08
  • 修回日期:  2020-11-29
  • 网络出版日期:  2020-12-02
  • 刊出日期:  2021-07-10

目录

    /

    返回文章
    返回