高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷达大擦地角海杂波特性与目标检测研究综述

刘宁波 姜星宇 丁昊 关键

刘宁波, 姜星宇, 丁昊, 关键. 雷达大擦地角海杂波特性与目标检测研究综述[J]. 电子与信息学报, 2021, 43(10): 2771-2780. doi: 10.11999/JEIT200451
引用本文: 刘宁波, 姜星宇, 丁昊, 关键. 雷达大擦地角海杂波特性与目标检测研究综述[J]. 电子与信息学报, 2021, 43(10): 2771-2780. doi: 10.11999/JEIT200451
Ningbo LIU, Xingyu JIANG, Hao DING, Jian GUAN. Summary of Research on Characteristics of Radar Sea Clutter and Target Detection at High Grazing Angles[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2771-2780. doi: 10.11999/JEIT200451
Citation: Ningbo LIU, Xingyu JIANG, Hao DING, Jian GUAN. Summary of Research on Characteristics of Radar Sea Clutter and Target Detection at High Grazing Angles[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2771-2780. doi: 10.11999/JEIT200451

雷达大擦地角海杂波特性与目标检测研究综述

doi: 10.11999/JEIT200451
基金项目: 国家自然科学基金(61871392, 61531020, 61871391)
详细信息
    作者简介:

    刘宁波:男,1983年生,博士,讲师,研究方向为雷达信号处理、海杂波抑制与目标智能检测

    姜星宇:男,1997年生,硕士生,研究方向为海杂波特性认知,雷达目标检测等

    丁昊:男,1988年生,博士,讲师,研究方向为海杂波特性认知,雷达目标检测等

    关键:男,1968年生,教授,博士生导师。研究方向为雷达目标检测与跟踪、侦察图像处理和信息融合

    通讯作者:

    姜星宇 525067778@qq.com

  • 中图分类号: TN959

Summary of Research on Characteristics of Radar Sea Clutter and Target Detection at High Grazing Angles

Funds: The National Natural Science Foundation of China (61871392, 61531020, 61871391)
  • 摘要: 海杂波作为影响海用雷达目标探测性能的主要制约因素之一,其在小擦地角下的物理机理和特性被广泛研究。由于产生机理上与小擦地角的差异,大擦地角下海杂波特性认知研究难以直接采用现有的多样化小擦地角海杂波模型与特性结论,大擦地角海杂波特性规律及目标检测技术研究依旧是一项极其复杂的系统工程。该文从雷达大擦地角对海探测试验数据集出发,围绕大擦地角海杂波建模、海杂波特性影响因素和海杂波中目标检测技术3个方面,回顾总结了大擦地角下海杂波特性认知与抑制的研究进展,梳理了大擦地角海杂波机理与特性研究的主要结论,并对技术发展方向进行了展望。
  • 图  1  雷达波长和海浪波长的一阶Bragg共振示意图,散射的波同相叠加增强

    图  2  后向散射系数随擦地角变化曲线

    图  3  HH极化条件下不同分布模型拟合效果

  • [1] 丁昊, 董云龙, 刘宁波, 等. 海杂波特性认知研究进展与展望[J]. 雷达学报, 2016, 5(5): 499–516. doi: 10.12000/JR16069

    DING Hao, DONG Yunlong, LIU Ningbo, et al. Overview and prospects of research on sea clutter property cognition[J]. Journal of Radars, 2016, 5(5): 499–516. doi: 10.12000/JR16069
    [2] ROSENBERG L and WATTS S. High grazing angle sea-clutter literature review[R]. DSTO-GD-0736, 2013.
    [3] 丁昊, 刘宁波, 董云龙, 等. 雷达海杂波测量试验回顾与展望[J]. 雷达学报, 2019, 8(3): 281–302. doi: 10.12000/JR19006

    DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006
    [4] LONG M W. Radar Reflectivity of Land and Sea[M]. 3rd ed. London: Artech House, 2001. 24–27.
    [5] GINI F, FARINA A, and GRECO M. Selected list of references on radar signal processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1): 329–359. doi: 10.1109/7.913696
    [6] ROSENBERG L. Characterization of high grazing angle X-band sea-clutter Doppler spectra[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 406–417. doi: 10.1109/TAES.2013.120809
    [7] 刘宁波, 董云龙, 王国庆, 等. X波段雷达对海探测试验与数据获取[J]. 雷达学报, 2019, 8(5): 656–667. doi: 10.12000/JR19089

    LIU Ningbo, DONG Yunlong, WANG Guoqing, et al. Sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2019, 8(5): 656–667. doi: 10.12000/JR19089
    [8] MASUKO H, OKAMOTO K, SHIMADA M, et al. Measurement of microwave backscattering signatures of the ocean surface using X band and Ka band airborne scatterometers[J]. Journal of Geophysical Research: Oceans, 1986, 91(C11): 13065–13083.
    [9] STACY N J S, BADGER D P, GOH A S, et al. The DSTO ingara airbone X-Band SAR polarimetric upgrade: First results[C]. IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 4474–4476.
    [10] STACY N J S, CRISP D, GOH A, et al. Polarimetric analysis of fine resolution X-band SAR sea clutter data[C]. IEEE International Conference on Geoscience and Remote Sensing Symposium, Seoul, South Korea, 2005: 2787–2790.
    [11] STACY N J S, PREISS M, and CRISP D. Polarimetric characteristics of X-band SAR sea clutter[C]. IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006: 4017–4020.
    [12] GUINARD N W and DALEY J C. An experimental study of a sea clutter model[J]. Proceedings of the IEEE, 1970, 58(4): 543–550. doi: 10.1109/PROC.1970.7693
    [13] ROSENBERG L, CRISP D J, and STACY N J. Analysis of the KK-distribution with X-band medium grazing angle sea-clutter[C]. IEEE International Radar Conference "Surveillance for a Safer World", Bordeaux, France, 2009: 1–6.
    [14] RICE S O. Reflection of electromagnetic waves from slightly rough surfaces[J]. Communications on Pure and Applied Mathematics, 1951, 4(2/3): 351–378.
    [15] PEAKE W H. Theory of radar return from terrain[C]. IRE Convention Record, New York, USA, 1959: 27–41.
    [16] WRIGHT J W. Backscattering from capillary waves with application to sea clutter[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(6): 749–754. doi: 10.1109/TAP.1966.1138799
    [17] WRIGHT J W. A new model for sea clutter[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 217–223. doi: 10.1109/TAP.1968.1139147
    [18] VALENZUELA G R, LAING M B, and DALEY J C. Ocean spectra for the high frequency waves as determined from airborne radar measurements[J]. Journal of Marine Research, 1971, 29(2): 69–84.
    [19] BASS F G, FUKS I M, KALMYKOV A I, et al. Very high frequency radiowave scattering by a disturbed sea surface part II: Scattering from an actual sea surface[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(5): 560–568. doi: 10.1109/TAP.1968.1139244
    [20] HASSELMANN K and SCHIELER M. Radar backscatter from the sea surface[C]. The 8th Symposium on Naval Hydrodynamics, Arlington, USA, 1970: 361–388.
    [21] VALENZUELA G R and LAING M B. Study of Doppler spectra of radar sea echo[J]. Journal of Geophysical Research, 1970, 75(3): 551–563. doi: 10.1029/JC075i003p00551
    [22] LEE P H Y, BARTER J D, BEACH K L, et al. X band microwave backscattering from ocean waves[J]. Journal of Geophysical Research: Oceans, 1995, 100(C2): 2591–2611. doi: 10.1029/94JC02741
    [23] NATHANSON F E. Radar Design Principles[M]. 2nd ed. New York: McGraw-Hill International Edition, 1991.
    [24] LEE P H Y, BARTER J D, BEACH K L, et al. Power spectral lineshapes of microwave radiation backscattered from sea surfaces at small grazing angle[J]. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(5): 252–258. doi: 10.1049/ip-rsn:19952084
    [25] ULABY F T, MOORE R K, and FUNG A K. Microwave Remote Sensing: Active and Passive, Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory[M]. Norwood: Artech House, Inc., 1982.
    [26] LEE P H Y, BARTER J D, LAKE B M, et al. Lineshape analysis of breaking-wave Doppler spectra[J]. IEE Proceedings-Radar, Sonar and Navigation, 1998, 145(2): 135–139. doi: 10.1049/ip-rsn:19981822
    [27] GREGERS-HANSEN V and MITAL R. An improved empirical model for radar sea clutter reflectivity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3512–3524. doi: 10.1109/TAES.2012.6324732
    [28] SPAULDING B, HORTON D, and PHAM H. Wind aspect factor in sea clutter modeling[C]. IEEE International Radar Conference, Arlington, USA, 2005: 89–92.
    [29] WALKER D. Doppler modelling of radar sea clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(2): 73–80. doi: 10.1049/ip-rsn:20010182
    [30] CRISP D J, KYPRIANOU R, ROSENBERG L, et al. Modelling x-band sea clutter at moderate grazing angles[C]. IEEE International Conference on Radar, Adelaide, Australia, 2008: 569–574.
    [31] ROSENBERG L, WATTS S, and BOCQUET S. Application of the K+Rayleigh distribution to high grazing angle sea-clutter[C]. International Radar Conference, Lille, France, 2014: 1–6.
    [32] 刘恒燕, 宋杰, 熊伟, 等. 大入射余角海杂波相关特性分析及幅度拟合[J]. 海军航空工程学院学报, 2018, 33(3): 307–312. doi: 10.7682/j.issn.1673-1522.2018.03.009

    LIU Hengyan, SONG Jie, XIONG Wei, et al. Sea clutter correlation analysis and amplitude fitting for large grazing angle[J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33(3): 307–312. doi: 10.7682/j.issn.1673-1522.2018.03.009
    [33] WATTS S, ROSENBERG L, BOCQUET S, et al. Doppler spectra of medium grazing angle sea clutter; part 1: Characterisation[J]. IET Radar, Sonar & Navigation, 2016, 10(1): 24–31.
    [34] WATTS S, ROSENBERG L, BOCQUET S, et al. Doppler spectra of medium grazing angle sea clutter; part 2: Model assessment and simulation[J]. IET Radar, Sonar & Navigation, 2016, 10(1): 32–42.
    [35] WATTS S. Modeling and simulation of coherent sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3303–3317. doi: 10.1109/TAES.2012.6324707
    [36] 任子西. 不同入射余角情况下海面电波特性对雷达导引头的影响分析[J]. 战术导弹技术, 2019(4): 1–6.

    REN Zixi. Analysis of the influence of sea radio wave on radar seeker under different incidence angle conditions[J]. Tactical Missile Technology, 2019(4): 1–6.
    [37] 周平, 张新征, 黄培康, 等. 海面后向散射机载测量结果及分析[J]. 系统工程与电子技术, 2006, 28(3): 325–328. doi: 10.3321/j.issn:1001-506X.2006.03.001

    ZHOU Ping, ZHANG Xinzheng, HUANG Peikang, et al. Results of airborne measurement of sea surface backscattering and analysis[J]. Systems Engineering and Electronics, 2006, 28(3): 325–328. doi: 10.3321/j.issn:1001-506X.2006.03.001
    [38] DONG Yunhan and HAYWOOD B. High grazing angle X-band sea clutter distributions[C]. IET International Conference on Radar Systems, Edinburgh, UK, 2007: 1–5.
    [39] ROSENBERG L, CRISP D J, and STACY N J. Analysis of the KK-distribution with medium grazing angle sea-clutter[J]. IET Radar, Sonar & Navigation, 2010, 4(2): 209–222.
    [40] CRISP D J, ROSENBERG L, STACY N J, et al. Modelling X-band sea clutter with the K-distribution: Shape parameter variation[C]. IEEE International Radar Conference "Surveillance for a Safer World", Bordeaux, France, 2009: 1–6.
    [41] ROSENBERG L, CRISP D J, and STACY N J. Statistical models for medium grazing angle X-band sea-clutter[R]. Defence Applications of Signal Processing, 2009.
    [42] DONG Yunhan. High grazing angle and high resolution sea clutter correlation and polarization analyses[R]. Technical Report DSTO-RR-1972, 2007.
    [43] LAMONT-SMITH T. Investigation of the variability of Doppler spectra with radar frequency and grazing angle[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(5): 291–298. doi: 10.1049/ip-rsn:20040859
    [44] 刘恒燕, 宋杰, 熊伟, 等. 大入射余角CFAR检测器[J]. 系统工程与电子技术, 2019, 41(6): 1218–1223. doi: 10.3969/j.issn.1001-506X.2019.06.07

    LIU Hengyan, SONG Jie, XIONG Wei, et al. Large-grazing-angle CFAR detector[J]. Systems Engineering and Electronics, 2019, 41(6): 1218–1223. doi: 10.3969/j.issn.1001-506X.2019.06.07
    [45] WEINBERG G V. Coherent multilook radar detection for targets in KK-distributed clutter[J]. InTech, 2012: 161–176.
    [46] WEINBERG G V. Suboptimal coherent radar detection in a KK-distributed clutter environment[J]. International Scholarly Research Notices, 2012, 2012: 614653.
    [47] JIANG Wen, HUANG Yulin, CUI Guolong, et al. Positive definite matrix space based detector with limited training samples for multiple target situations[J]. Progress in Electromagnetics Research, 2017, 60: 141–156. doi: 10.2528/PIERM17062003
    [48] 何友, 关键, 孟祥伟, 等. 雷达目标检测与恒虚警处理[M]. 北京: 清华大学出版社, 2011: 132–134.

    HE You, GUAN Jian, MENG Xiangwei, et al. Radar Target Detection and CFAR Processing[M]. Beijing: Tsinghua University Press, 2011: 132–134.
    [49] YANG Xiaoliang, WEN Gongjian, MA Conghui, et al. CFAR detection of moving range-spread target in white Gaussian noise using waveform contrast[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 282–286. doi: 10.1109/LGRS.2015.2511060
    [50] TAO Ding, ANFINSEN S N, and BREKKE C. Robust CFAR detector based on truncated statistics in multiple-target situations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 117–134. doi: 10.1109/TGRS.2015.2451311
    [51] SCHLKOPF B and SMOLA A J. Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[M]. Cambridge: The MIT Press, 2018: 11–13.
    [52] ZHANG Yudong, LU Siyan, ZHOU Xingxing, et al. Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: Decision tree, k-nearest neighbors, and support vector machine[J]. Simulation, 2016, 92(9): 861–871. doi: 10.1177/0037549716666962
    [53] 张坤, 水鹏朗, 王光辉. 相参雷达K分布海杂波背景下非相干积累恒虚警检测方法[J]. 电子与信息学报, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441

    ZHANG Kun, SHUI Penglang, and WANG Guanghui. Non-coherent integration constant false alarm rate detectors against K-distributed sea clutter for coherent radar systems[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441
    [54] ROSENBERG L, VENKATARAMAN K, and JENKE C. Target detection in medium grazing angle sea clutter using scan to scan processing[C]. IET International Radar Conference, Toulon, France, 2019: 1–5.
    [55] 张烨, 许艇, 冯定忠, 等. 基于难分样本挖掘的快速区域卷积神经网络目标检测研究[J]. 电子与信息学报, 2019, 41(6): 1496–1502. doi: 10.11999/JEIT180702

    ZHANG Ye, XU Ting, FENG Dingzhong, et al. Research on faster RCNN object detection based on hard example mining[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1496–1502. doi: 10.11999/JEIT180702
    [56] 苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7(5): 565–574. doi: 10.12000/JR18077

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077
  • 加载中
图(3)
计量
  • 文章访问数:  1866
  • HTML全文浏览量:  1288
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-08
  • 修回日期:  2021-07-12
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回