高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多载波超密集网络的抗干扰分布式节能功率分配

何云 申敏 张梦

何云, 申敏, 张梦. 多载波超密集网络的抗干扰分布式节能功率分配[J]. 电子与信息学报, 2021, 43(7): 1886-1892. doi: 10.11999/JEIT200388
引用本文: 何云, 申敏, 张梦. 多载波超密集网络的抗干扰分布式节能功率分配[J]. 电子与信息学报, 2021, 43(7): 1886-1892. doi: 10.11999/JEIT200388
Yun HE, Min SHEN, Meng ZHANG. Anti-Interference Distributed Energy-Efficient Power Allocation for Multi-Carrier Ultra-Dense Networks[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1886-1892. doi: 10.11999/JEIT200388
Citation: Yun HE, Min SHEN, Meng ZHANG. Anti-Interference Distributed Energy-Efficient Power Allocation for Multi-Carrier Ultra-Dense Networks[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1886-1892. doi: 10.11999/JEIT200388

多载波超密集网络的抗干扰分布式节能功率分配

doi: 10.11999/JEIT200388
基金项目: 重庆市教育委员会科学技术研究项目(KJQN201800618)
详细信息
    作者简介:

    何云:女,1979年生,博士生,研究方向为移动通信物理层算法、混合预编码

    申敏:女,1963年生,教授,研究方向为通信核心芯片、协议与系统应用技术

    张梦:女,1988年生,博士生,研究方向为移动通信物理层算法、网络安全

    通讯作者:

    何云 heyun@cqupt.edu.cn

  • 中图分类号: TN929.5

Anti-Interference Distributed Energy-Efficient Power Allocation for Multi-Carrier Ultra-Dense Networks

Funds: The Science and Technology Research Program of Chongqing Education Commission (KJQN201800618)
  • 摘要: 该文研究多载波超密集网络(UDN)上行链路能效最优功率分配方案,基于非合作博弈论提出一种抗干扰分布式功率分配方案,使每个小区独立优化能效的同时抑制邻小区干扰。由于最大传输功率和QoS约束下的能效函数具有不易解决的非凸特性,且小小区间存在严重干扰。针对以上挑战,该文在最佳响应过程中设计了一种高精度低复杂度的阶梯注水算法,基于该算法利用干扰信道增益提出了一种多用户抗干扰功率分配算法。仿真结果和数值分析表明该算法运算复杂度低,且能在保证系统频谱效率的同时大幅度提升系统能效。
  • 图  1  超密集网络系统模型

    图  2  平均能效和平均频谱效率

    图  3  子载波功率

    图  4  迭代性能对比

    表  1  阶梯注水算法

     (1) 通过遍历搜索获取注水水位和阶梯个数的上下界
     (2) for $i = \underline L , ··· ,\bar L$
     (3) 根据式(11),求解阶梯区间${C_{k,i}}$内解集${{{T}}_{k,i}}$
     (4) end
     (5) 根据式(13)确定最优注水水位$\mu _k^*$和注水功率
       ${\rm{WF}}({{{d}}_k}) = {\left[ {\mu _k^* - {{{d}}_k}} \right]^\dagger }$
    下载: 导出CSV

    表  2  多用户抗干扰能效功率分配算法

     (1) 选择初始点${{p}}(0) = {\rm{(}}{{{p}}_1}(0),{{{p}}_2}(0),···,{{{p}}_K}{\rm{(0)) = }}{\bf{0}}$,设置$v{\rm{ = 0}}$
     (2) while $\left| {{{{p}}_k}(v + 1) - {{{p}}_k}(v)} \right| > \varepsilon $
     (3) for $k = 1,2,···,K$
     (4) 测量${{\gamma }_k}(v + 1)$得到干扰${{{\overset{\frown} {{I}}} }_k}(v)$
     (5) if ${{{\overset{\frown} {{I}}} }_k}(v{\rm{ + 1}}) > = {{{\overset{\frown} {{I}}} }_k}(v)$
     (6) ${{p}}_k^* = {{{p}}_k}(v)$
     (7) ${{{p}}_k}(v + 1) = \alpha \times {{p}}_k^* + (1 - \alpha ) \times {\rm{WF}}({{{p}}_{\backslash k}}(v{\rm{ + }}1))$
     (8) else
     (9)$ {{p}}_{k}(v+1)=\beta \times {{p}}_{k}^{*}+(1-\beta )\times {{p}}_{k}(v)$
     (10)end
     (11) end
     (12) end while
    下载: 导出CSV

    表  3  仿真参数

    变量含义取值
    $N$子载波数目5
    ${N_0}$噪声谱密度$3.98 \times {10^{ - 19}}\;{\rm{ W/Hz}}$
    $B$总带宽$1\;{\rm{ MHz}}$
    ${p_{\rm{c}}}$电路消耗功率$300\;{\rm{ mW}}$
    $a$传播指数3.6
    ${\rm{cte}}$传播常数$2.57399 \times {10^{ - 2}}$
    ${d_{\min }}$最小距离$35\;{\rm{ m}}$
    ${d_{\max }}$最大距离$250\;{\rm{ m}}$
    $K$用户数10
    $M$基站天线数10
    下载: 导出CSV
  • [1] The Climate Group. Smart 2020: Enabling the low carbon economy in the information age[R]. The Climate Group London, 2008.
    [2] BACCI G, BELMEGA E V, MERTIKOPOULOS P, et al. Energy-aware competitive power allocation for heterogeneous networks under QoS constraints[J]. IEEE Transactions on Wireless Communications, 2015, 14(9): 4728–4742. doi: 10.1109/TWC.2015.2425397
    [3] LAHOUD S, KHAWAM K, MARTIN S, et al. Energy-efficient joint scheduling and power control in multi-cell wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3409–3426. doi: 10.1109/JSAC.2016.2611847
    [4] CHARAR M A, GUENNOUN Z, and ANIBA G. Assessment of a closed-form iterative water filling energy efficient power control algorithm in multi-carrier context[C]. 2017 International Conference on Wireless Networks And Mobile Communications (Wincom), Rabat, Morocco, 2017: 304–309. doi: 10.1109/WINCOM.2017.8238195.
    [5] HE P, ZHANG Shan, ZHAO Lian, et al. Multichannel power allocation for maximizing energy efficiency in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5895–5908. doi: 10.1109/tvt.2018.2803126
    [6] HE P and DONG Min. Energy-efficient power allocation maximization with mixed group sum power bound and QoS constraints[J]. IEEE Transactions on Communications, 2019, 67(10): 7139–7151. doi: 10.1109/TCOMM.2019.2926454
    [7] DONG Guannan, ZHANG Haixia, JIN Shi, et al. Energy-efficiency-oriented joint user association and power allocation in distributed massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5794–5808. doi: 10.1109/TVT.2019.2912388
    [8] D'ORO S, ZAPPONE A, PALAZZO S, et al. A learning-based approach to energy efficiency maximization in wireless networks[C]. 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377081.
    [9] LI Yuzhou, ZHANG Yu, LUO Kai, et al. Ultra-dense hetnets meet big data: Green frameworks, techniques, and approaches[J]. IEEE Communications Magazine, 2018, 56(6): 56–63. doi: 10.1109/MCOM.2018.1700425
    [10] 朱晓荣, 朱蔚然. 超密集小峰窝网中基于干扰协调的小区分簇和功率分配算法[J]. 电子与信息学报, 2016, 38(5): 1173–1178. doi: 10.11999/JEIT150756

    ZHU Xiaorong and ZHU Weiran. Interference coordination-based cell clustering and power allocation algorithm in dense small cell networks[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1173–1178. doi: 10.11999/JEIT150756
    [11] PENG Juan, ZENG Jie, SU Xin, et al. A QoS-based cross-tier cooperation resource allocation scheme over ultra-dense HetNets[J]. IEEE Access, 2019, 7: 27086–27096. doi: 10.1109/ACCESS.2019.2901506
    [12] XIN Jincan, GAO Hui, TAN Yuande, et al. Energy-efficient power control for ultra-dense networks with distributed antenna arrays[C]. 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 2019: 1–6. doi: 10.1109/ICCW.2019.8757032.
    [13] 钱志鸿, 蒙武杰, 王雪, 等. 全负载蜂窝网络下多复用D2D通信功率分配算法研究[J]. 电子与信息学报, 2020, 42(12): 2939–2945. doi: 10.11999/JEIT190974

    QIAN Zhihong, MENG Wujie, WANG Xue, et al. Research on power allocation algorithm of multi-to-one multiplexing D2D communication underlaying full load cellular networks[J]. Journal of Electronics &Information Technology, 2020, 42(12): 2939–2945. doi: 10.11999/JEIT190974
    [14] MIAO Guowang, HIMAYAT N, LI G Y, et al. Distributed interference-aware energy-efficient power optimization[J]. IEEE Transactions on Wireless Communications, 2011, 10(4): 1323–1333. doi: 10.1109/twc.2011.021611.101376
    [15] KWON G and PARK H. Joint user association and beamforming design for millimeter wave UDN with wireless backhaul[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(12): 2653–2668. doi: 10.1109/JSAC.2019.2947926
    [16] KHODMI A, BENREJEB S, and CHOUKAIR Z. Iterative water filling power allocation and relay selection based on two-hop relay in 5G/heterogeneous ultra dense network[C]. The 7th International Conference on Communications and Networking (ComNet), Hammamet, Tunisia, 2018: 1–6. doi: 10.1109/COMNET.2018.8622298.
    [17] ZENG Ming, NGUYEN N P, DOBRE O A, et al. Spectral-and energy-efficient resource allocation for multi-carrier uplink NOMA systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 9293–9296. doi: 10.1109/TVT.2019.2926701
    [18] JIANG Yanxiang, LU Ningning, CHEN Yan, et al. Energy-efficient noncooperative power control in small-cell networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7540–7547. doi: 10.1109/TVT.2017.2673245
    [19] FACCHINEI F and KANZOW C. Generalized Nash equilibrium problems[J]. Annals of Operations Research, 2010, 175(1): 177–211. doi: 10.1007/s10479-009-0653-x
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  1082
  • HTML全文浏览量:  380
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-15
  • 修回日期:  2020-12-09
  • 网络出版日期:  2020-12-21
  • 刊出日期:  2021-07-10

目录

    /

    返回文章
    返回