高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种低开销的三点翻转自恢复锁存器设计

黄正峰 李先东 陈鹏 徐奇 宋钛 戚昊琛 欧阳一鸣 倪天明

黄正峰, 李先东, 陈鹏, 徐奇, 宋钛, 戚昊琛, 欧阳一鸣, 倪天明. 一种低开销的三点翻转自恢复锁存器设计[J]. 电子与信息学报, 2021, 43(9): 2508-2517. doi: 10.11999/JEIT200379
引用本文: 黄正峰, 李先东, 陈鹏, 徐奇, 宋钛, 戚昊琛, 欧阳一鸣, 倪天明. 一种低开销的三点翻转自恢复锁存器设计[J]. 电子与信息学报, 2021, 43(9): 2508-2517. doi: 10.11999/JEIT200379
Zhengfeng HUANG, Xiandong LI, Peng CHEN, Qi XU, Tai Song, Haochen QI, Yiming OUYANG, Tianming NI. A Low-Cost Triple-Node-Upset-Resilient Latch Design[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2508-2517. doi: 10.11999/JEIT200379
Citation: Zhengfeng HUANG, Xiandong LI, Peng CHEN, Qi XU, Tai Song, Haochen QI, Yiming OUYANG, Tianming NI. A Low-Cost Triple-Node-Upset-Resilient Latch Design[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2508-2517. doi: 10.11999/JEIT200379

一种低开销的三点翻转自恢复锁存器设计

doi: 10.11999/JEIT200379
基金项目: 国家自然科学基金(61874156, 61874157, 61904001, 61904047),安徽省自然科学基金(1908085QF272)
详细信息
    作者简介:

    黄正峰:男,1978年生,教授,硕士生导师,研究方向是数字系统设计自动化

    李先东:男,1996年生,硕士生,研究方向是集成电路软错误分析和系统可靠性设计

    陈鹏:男,1995年生,硕士生,研究方向是硬件安全

    徐奇:男,1991年生,讲师,研究方向是数字集成电路容错设计

    宋钛:男,1982年生,博士生,研究方向是数字集成电路测试

    戚昊琛:女,1981年生,高级实验师,研究方向是传感器与嵌入式系统

    欧阳一鸣:男,1963年生,教授,研究方向是数字系统设计自动化等

    倪天明:男,1991年出生,讲师,研究方向是三维集成电路容错设计

    通讯作者:

    倪天明 timmyni126@126.com

  • 中图分类号: TN43; TP302.8

A Low-Cost Triple-Node-Upset-Resilient Latch Design

Funds: The National Natural Science Foundation of China (61874156, 61874157, 61904001, 61904047), Anhui Province Natural Science Foundation (1908085QF272)
  • 摘要: 随着集成电路特征尺寸的不断缩减,在恶劣辐射环境下,纳米级CMOS集成电路中单粒子三点翻转的几率日益增高,严重影响可靠性。为了实现单粒子三点翻转自恢复,该文提出一种低开销的三点翻转自恢复锁存器(LC-TNURL)。该锁存器由7个C单元和7个钟控C单元组成,具有对称的环状交叉互锁结构。利用C单元的阻塞特性和交叉互锁连接方式,任意3个内部节点发生翻转后,瞬态脉冲在锁存器内部传播,经过C单元多级阻塞后会逐级消失,确保LC-TNURL锁存器能够自行恢复到正确逻辑状态。详细的HSPICE仿真表明,与其他三点翻转加固锁存器(TNU-Latch, LCTNUT, TNUTL, TNURL)相比,LC-TNURL锁存器的功耗平均降低了31.9%,延迟平均降低了87.8%,功耗延迟积平均降低了92.3%,面积开销平均增加了15.4%。相对于参考文献中提出的锁存器,LC-TNURL锁存器的PVT波动敏感性最低,具有较高的可靠性。
  • 图  1  现有的TNUs加固锁存器

    图  2  本文提出的LC-TNURL锁存器

    图  3  LC-TNURL故障注入

    图  6  不同电压下的功耗

    图  4  不同工艺角下的功耗

    图  5  不同工艺角下的延迟

    图  7  不同电压下的延迟

    图  8  不同温度下的功耗

    图  9  不同温度下的延迟

    表  1  各锁存器加固能力对比(%)

    锁存器名称DNUs容忍率DNUs自恢复率TNUs容忍率TNUs自恢复率
    TNU-Latch[8]1009110076
    LCTNUT[9]1004310014
    TNUTL[10]1003310017
    TNURL[11]100100100100
    本文结构100100100100
    下载: 导出CSV

    表  2  性能与开销对比

    锁存器名称功耗 (µW)延迟 (ps)面积 (USTs)功耗延迟积 (aJ)
    TNU-Latch[8]1.06106.36216112.74
    LCTNUT[9]0.705.021323.51
    TNUTL[10]0.5324.0510812.75
    TNURL[11]1.646.9938411.39
    本文结构0.623.562522.21
    下载: 导出CSV

    表  3  性能与开销的相对变化(%)

    锁存器名称Δ功耗Δ延迟Δ面积Δ功耗延迟积
    TNU-Latch[8]–41.5–96.716.7–98.0
    LCTNUT[9]–11.4–29.190.9–37.0
    TNUTL[10]17.0–85.2133.3–82.7
    TNURL[11]–62.2–49.1–34.4–80.6
    平均值–31.9–87.815.4–92.3
    下载: 导出CSV

    表  4  不同锁存器的PVT波动方差

    锁存器名称σ2(PP)σ2(PD)σ2(VP)σ2(VD)σ2(TP)σ2(TD)平均方差
    TNU-Latch[8]698.992336.630.7112073.400.011763.432812.20
    LCTNUT[9]1964.7573.310.54103.780.0095.35372.95
    TNUTL[10]28.94223.500.08479.020.0050.56130.35
    TNURL[11]11.0418.180.9528.110.0112.7911.85
    本文结构9.724.320.224.310.010.453.17
    下载: 导出CSV
  • [1] 贾海昆, 池保勇. 硅基毫米波雷达芯片研究现状与发展[J]. 电子与信息学报, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666

    JIA Haikun and CHI Baoyong. The status and trends of silicon-based millimeter-wave radar SoCs[J]. Journal of Electronics &Information Technology, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666
    [2] 贺成艳, 卢晓春, 郭际. 一种新型卫星导航信号波形畸变特性评估新方法[J]. 电子与信息学报, 2019, 41(5): 1017–1024. doi: 10.11999/JEIT180656

    HE Chengyan, LU Xiaochun, and GUO Ji. Evil waveform evaluating method for new GNSS signals[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1017–1024. doi: 10.11999/JEIT180656
    [3] LIANG Huaguo, Li Xin, HUANG Zhengfeng, et al. Highly robust double node upset resilient hardened latch design[J]. IEICE Transactions on Electronics, 2017, E100-C(5): 496–503. doi: 10.1587/transele.E100.C.496
    [4] IBE E, TANIGUCHI H, YAHAGI Y, et al. Impact of scaling on neutron-induced soft error in SRAMs from a 250 nm to a 22 nm design rule[J]. IEEE Transactions on Electron Devices, 2010, 57(7): 1527–1538. doi: 10.1109/ted.2010.2047907
    [5] 冯彦君, 华更新, 刘淑芬. 航天电子抗辐射研究综述[J]. 宇航学报, 2007, 28(5): 1071–1080. doi: 10.3321/j.issn:1000-1328.2007.05.001

    FENG Yanjun, HUA Gengxin, and LIU Shufen. Radiation hardness for space electronics[J]. Journal of Astronautics, 2007, 28(5): 1071–1080. doi: 10.3321/j.issn:1000-1328.2007.05.001
    [6] JIANG Jianwei, XU Yiran, REN Jiangchuan, et al. Low-cost single event double-upset tolerant latch design[J]. Electronics Letters, 2018, 54(9): 554–556. doi: 10.1049/el.2018.0558
    [7] HUANG Zhengfeng, ZHANG Yangyang, SU Zian, et al. A hybrid DMR latch to tolerate MNU using TDICE and WDICE[C]. 2018 IEEE 27th Asian Test Symposium (ATS), Hefei, China, 2018: 121–126. doi: 10.1109/ats.2018.00033.
    [8] WATKINS A and TRAGOUDAS S. Radiation hardened latch designs for double and triple node upsets[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 8(3): 616–626. doi: 10.1109/tetc.2017.2776285
    [9] YAN Aibin, LAI Chaoping, ZHANG Yinlei, et al. Novel low cost, double-and-triple-node-upset-tolerant latch designs for nano-scale CMOS[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(1): 520–533. doi: 10.1109/TETC.2018.2871861
    [10] LIU Xin. Multiple node upset-tolerant latch design[J]. IEEE Transactions on Device and Materials Reliability, 2019, 19(2): 387–392. doi: 10.1109/TDMR.2019.2912811
    [11] YAN Aibin, FENG Xiangfeng, HU Yuanjie, et al. Design of a triple-node-upset self-recoverable latch for aerospace applications in harsh radiation environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1163–1171. doi: 10.1109/TAES.2019.2925448
    [12] KUMAR C I and ANAND B. A highly reliable and energy-efficient triple-node-upset-tolerant latch design[J]. IEEE Transactions on Nuclear Science, 2019, 66(10): 2196–2206. doi: 10.1109/tns.2019.2939380
    [13] YAN Aibin, XU Zhelong, YANG Kang, et al. A novel low-cost TMR-without-voter based HIS-insensitive and MNU-tolerant latch design for aerospace applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 2666–2676. doi: 10.1109/taes.2019.2951186
    [14] LIN Dianpeng, XU Yiran, LI Xiaoyun, et al. A novel self-recoverable and triple nodes upset resilience DICE latch[J]. IEICE Electronics Express, 2018, 15(19): 20180753. doi: 10.1587/elex.15.20180753
    [15] NICOLAIDIS M, PEREZ R, and ALEXANDRESCU D. Low-cost highly-robust hardened cells using blocking feedback transistors[C]. 26th IEEE VLSI Test Symposium (vts 2008), San Diego, USA, 2008: 371–376. doi: 10.1109/vts.2008.15.
    [16] BLUM D R and DELGADO-FRIAS J G. Schemes for eliminating transient-width clock overhead from SET-tolerant memory-based systems[J]. IEEE Transactions on Nuclear Science, 2006, 53(3): 1564–1573. doi: 10.1109/tns.2006.874496
    [17] CALIN T, NICOLAIDIS M, and VELAZCO R. Upset hardened memory design for submicron CMOS technology[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2874–2878. doi: 10.1109/23.556880
    [18] 黄正峰, 王世超, 欧阳一鸣, 等. 40 nm CMOS工艺下的低功耗容软错误锁存器[J]. 电子与信息学报, 2017, 39(6): 1464–1471. doi: 10.11999/JEIT160889

    HUANG Zhengfeng, WANG Shichao, OUYANG Yiming, et al. Low power soft error tolerant latch for 40 nm CMOS technology[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1464–1471. doi: 10.11999/JEIT160889
    [19] 黄正峰, 陈凡, 蒋翠云, 等. 基于时序优先的电路容错混合加固方案[J]. 电子与信息学报, 2014, 36(1): 234–240. doi: 10.3724/SP.J.1146.2013.00449

    HUANG Zhengfeng, CHEN Fan, JIANG Cuiyun, et al. A hybrid hardening strategy for circuit soft-error-tolerance based on timing priority[J]. Journal of Electronics &Information Technology, 2014, 36(1): 234–240. doi: 10.3724/SP.J.1146.2013.00449
    [20] MITRA S, SEIFERT N, ZHANG M, et al. Robust system design with built-in soft-error resilience[J]. Computer, 2005, 38(2): 43–52. doi: 10.1109/mc.2005.70
    [21] NEALE A and SACHDEV M. Neutron radiation induced soft error rates for an adjacent-ECC protected SRAM in 28 nm CMOS[J]. IEEE Transactions on Nuclear Science, 2016, 63(3): 1912–1917. doi: 10.1109/TNS.2016.2547963
    [22] OMANA M, ROSSI D, and METRA C. Latch susceptibility to transient faults and new hardening approach[J]. IEEE Transactions on Computers, 2007, 56(9): 1255–1268. doi: 10.1109/TC.2007.1070
    [23] MESSENGER G C. Collection of charge on junction nodes from ion tracks[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 2024–2031. doi: 10.1109/TNS.1982.4336490
    [24] KATSAROU K and TSIATOUHAS Y. Soft error interception latch: Double node charge sharing SEU tolerant design[J]. Electronics Letters, 2015, 51(4): 330–332. doi: 10.1049/el.2014.4374
    [25] YAN Aibin, LIANG Huaguo, HUANG Zhengfeng, et al. An SEU resilient, SET filterable and cost effective latch in presence of PVT variations[J]. Microelectronics Reliability, 2016, 63: 239–250. doi: 10.1016/j.microrel.2016.06.004
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  812
  • HTML全文浏览量:  412
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-05
  • 修回日期:  2021-05-15
  • 网络出版日期:  2021-08-11
  • 刊出日期:  2021-09-16

目录

    /

    返回文章
    返回