高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时空上下文信息的POI推荐模型研究

叶继华 杨思渝 左家莉 王明文

叶继华, 杨思渝, 左家莉, 王明文. 基于时空上下文信息的POI推荐模型研究[J]. 电子与信息学报, 2021, 43(12): 3546-3553. doi: 10.11999/JEIT200368
引用本文: 叶继华, 杨思渝, 左家莉, 王明文. 基于时空上下文信息的POI推荐模型研究[J]. 电子与信息学报, 2021, 43(12): 3546-3553. doi: 10.11999/JEIT200368
Jihua YE, Siyu YANG, Jiali ZUO, Mingwen WANG. Research on POI Recommendation Model Based on Spatio-temporal Context Information[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3546-3553. doi: 10.11999/JEIT200368
Citation: Jihua YE, Siyu YANG, Jiali ZUO, Mingwen WANG. Research on POI Recommendation Model Based on Spatio-temporal Context Information[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3546-3553. doi: 10.11999/JEIT200368

基于时空上下文信息的POI推荐模型研究

doi: 10.11999/JEIT200368
基金项目: 国家自然科学基金(61462042, 61866018, 61876074)
详细信息
    作者简介:

    叶继华:男,1966年生,教授,博士生导师,主要研究方向为智能信息处理、数据融合、物联网技术、图像处理

    杨思渝:女,1994年生,硕士生,研究方向为智能信息处理

    左家莉:女,1981年生,博士,副教授,硕士生导师,主要研究方向为自然语言处理

    王明文:男,1964年生,教授,博士生导师,主要研究方向为自然语言处理、信息检索、机器学习、数据挖掘

    通讯作者:

    叶继华 yjhwcL@163.com

  • 中图分类号: TP391

Research on POI Recommendation Model Based on Spatio-temporal Context Information

Funds: The National Natural Science Foundation of China (61462042, 61866018, 61876074)
  • 摘要: 随着基于位置的社交网络(LBSN)技术的快速发展,为移动用户提供个性化服务的兴趣点(POI)推荐成为关注重点。由于POI推荐面临着数据稀疏、影响因素多和用户偏好复杂的挑战,因此传统的POI推荐往往只考虑签到频率以及签到时间和地点对用户的影响,而忽略了签到序列中用户前后行为的关联影响。为了解决上述问题,该文通过序列的表示考虑签到数据的时间影响和空间影响,建立了时空上下文信息的POI推荐模型(STCPR),为POI推荐提供了更精准的个性化偏好。该模型基于序列到序列的框架下,将用户信息、POI信息、类别信息和时空上下文信息进行向量化后嵌入GRU网络中,同时利用了时间注意力机制、全局和局部的空间注意力机制来综合考虑用户偏好与变化趋势,从而向用户推荐感兴趣的Top-N的POI。该文通过在两个真实的数据集上实验来验证模型的性能。实验的结果表明,该文所提出的方法在召回率(Recall)和归一化折损累计增益(NDCG)方面优于几种现有的方法。
  • 图  1  时空上下文信息的POI推荐(STCPR)模型框架图

    图  2  在不同数据集上学习率$\alpha $对召回率的影响

    图  3  签到序列长度在不同数据集上的变化

    图  4  时间阈值${\pi _t}$在不同数据集上的变化

    图  5  距离阈值${\pi _d}$在不同数据集上的变化

    图  6  Gowalla数据集上STCPR不同变体对比

    图  7  Foursquare数据集上STCPR不同变体

    表  1  数据集

    数据集用户数地点数签到数密度
    Gowalla13117371969530060.0019
    Foursquare5398278958642300.0021
    下载: 导出CSV

    表  2  不同方法在两个数据集上的实验结果(%)

    数据集模型Recall@NNDCG@N
    N=2N=5N=10N=2N=5N=10
    GowallaFPMC9.8414.1219.287.929.8911.51
    Distance2Pre14.2718.0523.5711.7313.9515.68
    GRU13.3417.4421.9610.2813.1214.74
    ST-RNN13.9519.0423.0410.7912.5413.52
    UCGSMF_GEN13.6618.5222.668.7510.5912.49
    STCPR15.2621.2126.5413.5615.8417.79
    FoursquareFPMC10.6115.5520.878.5410.3211.67
    Distance2Pre14.3618.9324.1212.1114.3415.87
    GRU13.6416.9422.1311.4813.1714.98
    ST-RNN13.5619.3223.2710.7813.0813.86
    UCGSMF_GEN12.7117.8222.979.0811.7212.8
    MFM-HNN13.9518.8523.8911.7613.5214.23
    STCPR15.5921.8427.0313.9616.3718.34
    下载: 导出CSV
  • [1] 司亚利, 张付志, 刘文远. 基于签到活跃度和时空概率模型的自适应兴趣点推荐方法[J]. 电子与信息学报, 2020, 42(3): 678–686. doi: 10.11999/JEIT190287

    SI Yali, ZHANG Fuzhi, and LIU Wenyuan. An adaptive point-of-interest recommendation method based on check-in activity and temporal-spatial probabilistic models[J]. Journal of Electronics &Information Technology, 2020, 42(3): 678–686. doi: 10.11999/JEIT190287
    [2] FENG Shanshan, GAO Cong, AN Bo, et al. POI2Vec: Geographical latent representation for predicting future visitors[C]. Proceedings of the 31th AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 102–108.
    [3] 孟祥福, 张霄雁, 唐延欢, 等. 基于地理-社会关系的多样性与个性化兴趣点推荐[J]. 计算机学报, 2019, 42(11): 2574–2590. doi: 10.11897/SP.J.1016.2019.02574

    MENG Xiangfu, ZHANG Xiaoyan, TANG Yanhuan, et al. A diversified and personalized recommendation approach based on geo-social relationships[J]. Chinese Journal of Computers, 2019, 42(11): 2574–2590. doi: 10.11897/SP.J.1016.2019.02574
    [4] 任星怡, 宋美娜, 宋俊德. 基于位置社交网络的上下文感知的兴趣点推荐[J]. 计算机学报, 2017, 40(4): 824–841. doi: 10.11897/SP.J.1016.2017.00824

    REN Xingyi, SONG Meina, and SONG Junde. Context-aware point-of-interest recommendation in location-based social networks[J]. Chinese Journal of Computers, 2017, 40(4): 824–841. doi: 10.11897/SP.J.1016.2017.00824
    [5] WEI Jian, He Jianhua, CHEN Kai, et al. Collaborative filtering and deep learning based recommendation system for cold start items[J]. Expert Systems with Applications, 2017, 69: 29–39. doi: 10.1016/j.eswa.2016.09.040
    [6] 柳天闻. 基于位置社交信息和群组的地点推荐算法研究与实现[D]. [硕士论文], 北京邮电大学, 2018.

    LIU Tianwen. The research and implementation of location recommendation algorithms based on location-social information and groups[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2018.
    [7] 冯浩, 黄坤, 李晶, 等. 基于深度学习的混合兴趣点推荐算法[J]. 电子与信息学报, 2019, 41(4): 880–887. doi: 10.11999/JEIT180458

    FENG Hao, HUANG Kun, LI Jing, et al. Hybrid point of interest recommendation algorithm based on deep learning[J]. Journal of Electronics &Information Technology, 2019, 41(4): 880–887. doi: 10.11999/JEIT180458
    [8] WANG Mufan, LU Yishu, HUANG J L, et al. SPENT: A successive POI recommendation method using similarity-based poi embedding and recurrent neural network with temporal influence[C]. 2019 IEEE International Conference on Big Data and Smart Computing, Kyoto, Japan, 2019: 1–8.
    [9] ZHAO Shenglin, LYU M R, KING I, et al. Geo-teaser: Geo-temporal sequential embedding rank for POI recommendation[C]. The 26th International Conference on World Wide Web Companion, Perth, Australia, 2017: 153–162.
    [10] WANG Hao, SHEN Huawei, OUYANG Wentao, et al. Exploiting POI-specific geographical influence for point-of-interest recommendation[C]. The 27th International Joint Conference on Artificial Intelligence Main Track, Stockholm, Sweden, 2018: 3877–3883.
    [11] ZHAO Shenglin, ZHAO Tong, YANG Haiqing, et al. STELLAR: Spatial-temporal latent ranking for successive point-of-interest recommendation[C]. The 30th AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016: 2605–2611.
    [12] CAI Ling, XU Jun, LIU Ju, et al. Integrating spatial and temporal contexts into a factorization model for POI recommendation[J]. International Journal of Geographical Information Science, 2018, 32(3): 524–546. doi: 10.1080/13658816.2017.1400550
    [13] ZHANG Zhiqian, LI Chenliang, WU Zhiyong, et al. Next: A neural network framework for next POI recommendation[J]. Frontiers of Computer Science, 2020, 14(2): 314–333. doi: 10.1007/s11704-018-8011-2
    [14] QIAN Tieyun, LIU Bei, NGUYEN Q V H, et al. Spatiotemporal representation learning for translation-based POI recommendation[J]. ACM Transactions on Information Systems, 2019, 37(2): 18. doi: 10.1145/3295499
    [15] RENDLE S, FREUDENTHALER C, and SCHMIDT-THIEME L. Factorizing personalized markov chains for next-basket recommendation[C]. The 19th International Conference on World Wide Web, Raleigh, USA, 2010: 811–820. doi: 10.1145/1772690.1772773.
    [16] CUI Qiang, TANG Yuyuan, WU Shu, et al. Distance2Pre: Personalized spatial preference for next point-of-interest prediction[C]. The 23rd Pacific-Asia Conference, Macau, China, 2019: 289–301. doi: 10.1007/978-3-030-16142-2_23.
    [17] LIU Qiang, WU Shu, WANG Liang, et al. Predicting the next location: A recurrent model with spatial and temporal contexts[C]. The 30th AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016: 194–200.
    [18] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. The 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014: 1724–1734, doi: 10.3115/v1/D14-1179.
    [19] 彭宏伟, 靳远远, 吕晓强, 等. 一种基于矩阵分解的上下文感知POI推荐算法[J]. 计算机学报, 2019, 42(8): 1797–1811. doi: 10.11897/SP.J.1016.2019.01797

    PENG Hongwei, JIN Yuanyuan, LV Xiaoqiang, et al. Context-Aware POI recommendation based on matrix factorization[J]. Chinese Journal of Computers, 2019, 42(8): 1797–1811. doi: 10.11897/SP.J.1016.2019.01797
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1277
  • HTML全文浏览量:  1137
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-07
  • 修回日期:  2021-04-26
  • 网络出版日期:  2021-06-02
  • 刊出日期:  2021-12-21

目录

    /

    返回文章
    返回