高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向6G的星地融合无线传输技术

徐常志 靳一 李立 张学娇 谢天娇 汪晓燕 李明玉 曹振新

徐常志, 靳一, 李立, 张学娇, 谢天娇, 汪晓燕, 李明玉, 曹振新. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28-36. doi: 10.11999/JEIT200363
引用本文: 徐常志, 靳一, 李立, 张学娇, 谢天娇, 汪晓燕, 李明玉, 曹振新. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28-36. doi: 10.11999/JEIT200363
Changzhi XU, Yi JIN, Li LI, Xuejiao ZHANG, Tianjiao XIE, Xiaoyan WANG, Mingyu LI, Zhenxin CAO. Wireless Transmission Technology of Satellite-terrestrial Integration for 6G Mobile Communication[J]. Journal of Electronics & Information Technology, 2021, 43(1): 28-36. doi: 10.11999/JEIT200363
Citation: Changzhi XU, Yi JIN, Li LI, Xuejiao ZHANG, Tianjiao XIE, Xiaoyan WANG, Mingyu LI, Zhenxin CAO. Wireless Transmission Technology of Satellite-terrestrial Integration for 6G Mobile Communication[J]. Journal of Electronics & Information Technology, 2021, 43(1): 28-36. doi: 10.11999/JEIT200363

面向6G的星地融合无线传输技术

doi: 10.11999/JEIT200363
基金项目: 国家自然科学基金(61801377),国家重点研发计划项目(2019YFB1803102)
详细信息
    作者简介:

    徐常志:男,1985年生,高级工程师,博士,研究方向为卫星通信与网络

    靳一:男,1984年生,高级工程师,博士,研究方向为卫星通信与网络

    李立:男,1976年生,研究员,研究方向为卫星通信与网络

    张学娇:女,1987年生,工程师,博士,研究方向为激光通信与组网

    谢天娇:女,1983年生,研究员,博士,研究方向为卫星网络及信道编译码技术

    汪晓燕:女,1971年生,工程师,博士,研究方向为激光通信技术

    李明玉:男,1978年生,副教授,博士,研究方向为射频电路与系统

    曹振新:男,1976年生,研究员,博士,研究方向为天线理论与设计

    通讯作者:

    徐常志 sandy_xu@126.com

  • 中图分类号: TN911.3

Wireless Transmission Technology of Satellite-terrestrial Integration for 6G Mobile Communication

Funds: The National Natural Science Foundation of China (61801377), The National Key Research and Development Program (2019YFB1803102)
  • 摘要: 随着5G移动通信网络走向商业化,围绕新一代移动通信系统(6G)的发展愿景、能力需求与关键技术开展研究正在成为新的热点。首先,该文概括了未来6G可能涉及的星地深度融合、新谱段通信、分布式协作MIMO和智能通信等关键技术方向,重点探讨了基于星地深度融合的天地一体化网络(SGIN);然后,针对可能存在的两种典型网络拓扑架构,分析了星间高速链路、星地馈电链路和星地用户链路的特点和技术要求,综述了3种不同类型传输链路的高速通信进展情况。最后,对未来6G天地互联网络亟需突破的光学相控阵多用户接入、高效能星地激光通信和光电一体化组网等关键技术进行分析与展望,以期为后续相关研究指明方向。
  • 图  1  “主干网+接入网”的网络架构

    图  2  低轨星座网络的网络架构

    图  3  实践二十号卫星激光终端

    图  4  穿过大气湍流的常规高斯光束和锋芒光束的光强模式比较

    图  5  星载光电混合交换结构

    图  6  6G软件定义网络的架构

    表  1  国内外星间激光链路代表性研究成果

    序号任务名称链路类型国家/
    地区
    发射时间通信速率链路状态参考文献
    1EDRS/
    Copernics/
    Airbus A310 AOC
    高轨-地、
    高轨-低轨、
    高轨-飞机
    欧洲2016~20191.8 Gbps@BPSK在轨文献[16,17]
    2OCSD低轨-低轨
    低轨-地
    美国2017100 Mbps@OOK
    (立方星)
    运行文献[18]
    3HICALI/
    CubeSOTA
    高轨-低轨
    高轨-地
    日本202110 Gbps@DPSK文献[19]
    4EDRS-D高轨-高轨欧洲日本20253.6 Gbps~10 Gbps
    @BPSK
    文献[20]
    5CLICK/
    Q4/
    TBIRD
    低轨-低轨欧洲美国2020~2024100 Mbps~1 Gbps
    @OOK, BPSK;
    200 Gbps(WDM)
    (立方星)
    计划文献[21-28]
    6Scylight高轨-高轨、
    高轨-低轨、
    高轨-地
    欧洲2025100 Gbps文献[29]
    下载: 导出CSV
  • 赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J]. 中国科学: 信息科学, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033

    ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. Scientia Sinica Informationis, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033
    CHEN Shanzhi, LIANG Yingchang, SUN Shaohui, et al. Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed[J]. IEEE Wireless Communications, 2020, 27(2): 218–228. doi: 10.1109/MWC.001.1900333
    尤肖虎, 尹浩, 邬贺铨. 6G与广域物联网[J]. 物联网学报, 2020, 4(1): 3–11.

    YOU Xiaohu, YIN Hao, and WU Hequan. On 6G and wide-area IoT[J]. Chinese Journal on Internet of Things, 2020, 4(1): 3–11.
    CableFree. Beyond 5G: The roadmap to 6G and beyond[EB/OL]. https://www.cablefree.net/wireless-technology/4glte-beyond-5g-roadmap-6g-beyond, 2017.
    NIEPHAUS C, KRETSCHMER M, and GHINEA G. QoS provisioning in converged satellite and terrestrial networks: A survey of the state-of-the-art[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2415–2441. doi: 10.1109/COMST.2016.2561078
    ZHU Xiangming, JIANG Chunxiao, KUANG Linling, et al. Cooperative transmission in integrated terrestrial-satellite networks[J]. IEEE Network, 2019, 33(3): 204–210. doi: 10.1109/MNET.2018.1800164
    CHEN Zhi, MA Xinying, ZHANG Bo, et al. A survey on Terahertz communications[J]. China Communications, 2019, 16(2): 1–35.
    YOU Xiaohu, WANG Dongming, SHENG Bin, et al. Cooperative distributed antenna systems for mobile communications [Coordinated and Distributed MIMO][J]. IEEE Wireless Communications, 2010, 17(3): 35–43. doi: 10.1109/MWC.2010.5490977
    WANG Dongming, WANG Jiangzhou, YOU Xiaohu, et al. Spectral efficiency of distributed MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(10): 2112–2127. doi: 10.1109/JSAC.2013.131012
    尤肖虎. Shannon信息论与未来6G技术潜能[J]. 中国科学: 信息科学, 2020, 50(9): 1377–1394.

    YOU Xiaohu. Shannon theory and future 6G’s technique potentials[J]. Scientia Sinica Informationis, 2020, 50(9): 1377–1394.
    WANG Tianqi, WEN Chaokai, WANG Hanqing, et al. Deep learning for wireless physical layer: Opportunities and challenges[J]. China Communications, 2017, 14(11): 92–111. doi: 10.1109/CC.2017.8233654
    尤肖虎, 张川, 谈晓思, 等. 基于AI的5G技术——研究方向与范例[J]. 中国科学: 信息科学, 2018, 48(12): 1589–1602. doi: 10.1360/N112018-00174

    YOU Xiaohu, ZHANG Chuan, TAN Xiaosi, et al. AI for 5G: Research directions and paradigms[J]. SCIENTIA SINICA Informationis, 2018, 48(12): 1589–1602. doi: 10.1360/N112018-00174
    YAO Haipeng, WANG Luyao, WANG Xiaodong, et al. The Space-terrestrial integrated network: An overview[J]. IEEE Communications Magazine, 2018, 56(9): 178–185. doi: 10.1109/MCOM.2018.1700038
    FOUST J. SpaceX's space-Internet woes: Despite technical glitches, the company plans to launch the first of nearly 12, 000 satellites in 2019[J]. IEEE Spectrum, 2019, 56(1): 50–51. doi: 10.1109/MSPEC.2019.8594798
    宋奕辰, 徐小涛, 宋文婷. 国内外卫星移动通信系统发展现状综述[J]. 电信快报, 2019(8): 37–41. doi: 10.3969/j.issn.1006-1339.2019.08.008

    SONG Yichen, XU Xiaotao, and SONG Wenting. Overview of the development of satellite mobile communication systems at home and abroad[J]. Telecommunications Information, 2019(8): 37–41. doi: 10.3969/j.issn.1006-1339.2019.08.008
    HEINE F, SÁNCHEZ-TERCERO A, MARTIN-PIMENTEL P, et al. In orbit perfomance of tesat LCTs[J]. Proceedings of SPIE, 2019, 10910: 109100U. doi: 10.1117/12.2510721
    HAAN H and SIEMENS C. Airborne optical communication terminal: First successful link from Tenerife to the GEO Alphasat[J]. Proceedings of SPIE, 2019, 11133: 1113306. doi: 10.1117/12.2529223
    ROSE T S, ROWEN D W, LALUMONDIERE S, et al. Optical communications downlink from a 1.5U Cubesat: OCSD program[J]. Proceedings of SPIE, 2018, 11180: 111800J. doi: 10.1117/12.2535938
    CARRASCO-CASADO A, DO P X, KOLEV D, et al. Intersatellite-link demonstration mission between CubeSOTA (LEO CubeSat) and ETS9-HICALI (GEO satellite)[C]. 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Portland, USA, 2019: 1–5. doi: 10.1109/ICSOS45490.2019.8978975.
    HAUSCHILDT H, LE GALLOU N, MEZZASOMA S, et al. Global quasi-real-time-services back to Europe: EDRS Global[J]. SPIE, 2018, 11180: 111800X. doi: 10.1117/12.2535952
    MATHASON B, ALBERT M M, ENGIN D, et al. CubeSat lasercom optical terminals for near-Earth to deep space communications[J]. Proceedings of SPIE, 2019, 10910: 1091005. doi: 10.1117/12.2508047
    MAYER D J and CAHOY K. CubeSat laser infrared crosslink[EB/OL]. https://ntrs.nasa.gov/search.jsp?R=20180006687, 2018.
    LONG M J. Pointing acquisition and tracking design and analysis for CubeSat laser communication[D]. [Master dissertation], Massachusetts Institute of Technology, 2018.
    VELAZCO J E, GRIFFIN J, WERNICKE D, et al. High data rate inter-satellite omnidirectional optical communicator[EB/OL]. The 32nd AIAA/USU Conference on Small Satellites. http://apdsl.eng.uci.edu/RecentConferences/High%20Data%20Rate%20Inter-Satellite%20Omnidirectional%20Optical%20Communicator.pdf. 2019.
    VELAZCO J E, GRIFFIN J, WERNICKE D, et al. Inter-satellite omnidirectional optical communicator for remote sensing[J]. SPIE, 2018, 10769: 107690L. doi: 10.1117/12.2322367
    ROBINSON B S, BOROSON D M, SCHIELER C M, et al. Terabyte infraRed delivery (TBIRD): A demonstration of large-volume direct-to-earth data transfer from low-earth orbit[J]. SPIE, 2018, 10524: 105240V. doi: 10.1117/12.2295023
    PARK E A, CORNWELL D, and ISRAEL D. NASA’s next generation≥100 Gbps optical communications relay[EB/OL]. https://ntrs.nasa.gov/search.jsp?R=20190030264, 2019.
    HAUSCHILDT H, ELIA C, JONES A, et al. ESAs ScyLight programme: Activities and status of the high throughput Optical Network "HydRON"[J]. Proceedings of SPIE, 2018, 11180: 111800G. doi: 10.1117/12.2535935
    HAUSCHILDT H, ELIA C and MOELLER H L. ScyLight-ESA’s secure and laser communication technology framework for SatCom[C]. 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Naha, Japan, 2017: 250–254. doi: 10.1109/ICSOS.2017.8357400.
    EDWARDS B L, ISRAEL D J, and WHITEMAN D E. A space based optical communications relay architecture to support future NASA science and exploration missions[C]. International Conference on Space Optical Systems and Applications (ICSOS), Kobe, Japan, 2014: S6–1.
    KUBO-OKA T, KUNIMORI H, SUZUKI K, et al. Development of "HICALI": High speed optical feeder link system between GEO and ground[J]. Proceedings of SPIE, 2018, 11180: 1118060. doi: 10.1117/12.2536135
    KOTAKE H, NAKAMURA J, GODA T, et al. Design and verification of a space-grade 10 Gbit/s high-speed transponder for an optical feeder link[J]. SPIE, 2019, 10910: 1091012. doi: 10.1117/12.2504367
    FIELDS R A, KOZLOWSKI D A, YURA H T, et al. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station[J]. SPIE, 2011: 44–53. doi: 10.1117/12.894662.
    KANEKO K, NISHIYAMA H, KATO N, et al. Construction of a flexibility analysis model for flexible high-throughput satellite communication systems with a digital channelizer[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3): 2097–2107. doi: 10.1109/TVT.2017.2736010
    ROUMELIOTIS A J, KOUROGIORGAS C I, and PANAGOPOULOS A D. Optimal dynamic capacity allocation for high throughput satellite communications systems[J]. IEEE Wireless Communications Letters, 2019, 8(2): 596–599. doi: 10.1109/LWC.2018.2881693
    谢珊珊, 李博. 2019年国外通信卫星发展综述[J]. 国际太空, 2020(2): 30–37.

    XIE Shanshan and LI Bo. Overview of the development of foreign communication satellites in 2019[J]. Space International, 2020(2): 30–37.
    YU Jianjun, LI Xinying, and ZHOU Wen. Tutorial: Broadband fiber-wireless integration for 5G+ communication[J]. APL Photonics, 2018, 3(11): 111101. doi: 10.1063/1.5042364
    刁文婷, 宋学瑞, 段崇棣. 星地量子保密通信进展[J]. 空间电子技术, 2016, 13(1): 83–88. doi: 10.3969/j.issn.1674-7135.2016.01.018

    DIAO Wenting, SONG Xuerui, and DUAN Chongdi. Advances in satellite-ground quantum secure Communication[J]. Space Electronic Technology, 2016, 13(1): 83–88. doi: 10.3969/j.issn.1674-7135.2016.01.018
    GREGORY M, HEINE F, KÄMPFNER H, et al. Coherent inter-satellite and satellite-ground laser links[J]. Proceedings of SPIE, 2011, 7923: 792303. doi: 10.1117/12.873532
    GREGORY M, HEINE F, KAMPFNER H, et al. Inter-satellite and satellite-ground laser communication links based on Homodyne BPSK[J]. SPIE, 2010, 7587: 75870E. doi: 10.1117/12.847888
    OAIDA B V, WU W, ERKMEN B I, et al. Optical link design and validation testing of the Optical PAyload for Lasercomm Science (OPALS) system[J]. SPIE, 2014, 8971: 89710U. doi: 10.1117/12.2045351
    LUZHANSKIY E, EDWARDS B, ISRAEL D, et al. Overview and status of the laser communication relay demonstration[J]. SPIE, 2016, 9739: 97390C. doi: 10.1117/12.2218182
    WANG J P, BROWNE C A, BURTON C D, et al. Performance and qualification of a multi-rate DPSK modem[J]. SPIE, 2014, 8971: 89710Z. doi: 10.1117/12.2057577
    WU Haiping and KAVEHRAD M. Availability evaluation of ground-to-air hybrid FSO/RF links[J]. International Journal of Wireless Information Networks, 2007, 14(1): 33–45. doi: 10.1007/s10776-006-0042-1
    TANG Y, BRANDT-PEARCE M, and WILSON S G. Adaptive coding and modulation for hybrid FSO/RF systems[C]. 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2009: 1644–4649. doi: 10.1109/ACSSC.2009.5469820.
    ESLAMI A, VANGALA S, and PISHRO-NIK H. Hybrid channel codes for efficient FSO/RF communication systems[J]. IEEE Transactions on Communications, 2010, 58(10): 2926–2938. doi: 10.1109/TCOMM.2010.082710.090195
    JUAREZ J C, YOUNG D W, VENKAT R A, et al. Analysis of link performance for the FOENEX laser communications system[J]. SPIE, 2012, 8380: 838007. doi: 10.1117/12.919928
    SUN Jie, TIMURDOGAN E, YAACOBI A, et al. Large-scale nanophotonic phased array[J]. Nature, 2013, 493(7431): 195–199. doi: 10.1038/nature11727
    CALVO R M, POLIAK J, SUROF J, et al. Optical technologies for very high throughput satellite communications[J]. SPIE, 2019, 10910: 109100W. doi: 10.1117/12.2513819
    BÜCHTER K D F, HERRMANN H, LANGROCK C, et al. All-optical Ti: PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared[J]. Optics Letters, 2009, 34(4): 470–472. doi: 10.1364/OL.34.000470
    ZHANG Ze, LIANG Xinli, GOUTSOULAS M, et al. Robust propagation of pin-like optical beam through atmospheric turbulence[J]. APL Photonics, 2019, 4(7): 076103. doi: 10.1063/1.5095996
    SHANG Yu, GUO Bingli, LI Xin, et al. Traffic pattern adaptive hybrid electrical and optical switching network for HPC system[J]. IEEE Communications Letters, 2019, 23(2): 270–273. doi: 10.1109/LCOMM.2018.2886014
    ESMAIL M A, RAGHEB A, FATHALLAH H, et al. Demonstration of photonics-based switching of 5G signal over hybrid all-optical network[J]. IEEE Photonics Technology Letters, 2018, 30(13): 1250–1253. doi: 10.1109/LPT.2018.2841974
    WANG Xiaoyu, VEERARAGHAVAN M, and SHEN Haiying. Evaluation study of a proposed hadoop for data center networks incorporating optical circuit switches[J]. Journal of Optical Communications and Networking, 2018, 10(8): C50–C63. doi: 10.1364/JOCN.10.000C50
    SHI Yongpeng, CAO Yurui, LIU Jiajia, et al. A cross-domain SDN architecture for multi-layered space-terrestrial integrated networks[J]. IEEE Network, 2019, 33(1): 29–35. doi: 10.1109/MNET.2018.1800191
    DU Jun, JIANG Chunxiao, ZHANG Haijun, et al. Auction design and analysis for SDN-based traffic offloading in hybrid satellite-terrestrial networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(10): 2202–2217. doi: 10.1109/JSAC.2018.2869717
    向敏, 饶华阳, 张进进, 等. 基于图卷积神经网络的软件定义电力通信网络路由控制策略[J]. 电子与信息学报, 待发表. doi: 10.11999/JEIT190971.

    XIANG Min, RAO Huayang, ZHANG Jinjin, et al. Software-defined power communication network routing control strategy based on graph convolution network[J]. Journal of Electronics & Information Technology, To be publised. doi: 10.11999/JEIT190971.
    徐瑨, 吴慧慈, 陶小峰. 5G网络空间安全对抗博弈[J]. 电子与信息学报, 2020, 42(10): 2319–2329. doi: 10.11999/JEIT200058

    XU Jin, WU Huici, and TAO Xiaofeng. 5G cyberspace security game[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2319–2329. doi: 10.11999/JEIT200058
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  2779
  • HTML全文浏览量:  1854
  • PDF下载量:  460
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 修回日期:  2020-08-26
  • 网络出版日期:  2020-09-02
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回