高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相对生成对抗网络的低清小脸幻构

邵文泽 张苗苗 李海波

邵文泽, 张苗苗, 李海波. 基于相对生成对抗网络的低清小脸幻构[J]. 电子与信息学报, 2021, 43(9): 2577-2585. doi: 10.11999/JEIT200362
引用本文: 邵文泽, 张苗苗, 李海波. 基于相对生成对抗网络的低清小脸幻构[J]. 电子与信息学报, 2021, 43(9): 2577-2585. doi: 10.11999/JEIT200362
Wenze SHAO, Miaomiao ZHANG, Haibo LI. Tiny Face Hallucination via Relativistic Adversarial Learning[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2577-2585. doi: 10.11999/JEIT200362
Citation: Wenze SHAO, Miaomiao ZHANG, Haibo LI. Tiny Face Hallucination via Relativistic Adversarial Learning[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2577-2585. doi: 10.11999/JEIT200362

基于相对生成对抗网络的低清小脸幻构

doi: 10.11999/JEIT200362
基金项目: 国家自然科学基金 (61771250, 61972213, 11901299),中央高校基本科研业务费专项资金 (30918014108)
详细信息
    作者简介:

    邵文泽:男,1981年生,博士,副教授,研究方向为变分方法、计算统计、表示学习及其成像与视觉应用

    张苗苗:女,1993年生,硕士生,研究方向为深度学习与人脸图像超分辨

    李海波:男,1965年生,博士,教授,研究方向为下一代智能视觉传感器网络和社交信号处理

    通讯作者:

    邵文泽 shaowenze@njupt.edu.cn

  • 中图分类号: TP391

Tiny Face Hallucination via Relativistic Adversarial Learning

Funds: The Natural National Science Foundation of China (61771250, 61972213, 11901299), The Fundamental Research Funds for the Central Universities (30918014108)
  • 摘要: 针对当前代表性低清小脸幻构方法存在的视觉真实感弱、网络结构复杂等问题,提出了一种基于相对生成对抗网络的低清小脸幻构方法(tfh-RGAN)。该文方法的网络架构包括幻构生成器和判别器两个部分,通过像素损失函数和相对生成对抗损失函数的联合最小化,实现生成器和判别器的交替迭代训练。其中,幻构生成器结合了残差块、稠密块以及深度可分离卷积算子,保证幻构效果和网络深度的同时降低生成器的参数量;判别器采用图像分类问题中的全卷积网络,通过先后去除批归一化层、添加全连接层,充分挖掘相对生成对抗网络在低清小脸幻构问题上的能力极限。实验结果表明,在不额外显式引入任何人脸结构先验的条件下,该文方法能够以更简练的网络架构输出清晰度更高、真实感更强的幻构人脸。从定量角度看,该文方法的峰值信噪比相较之前的若干代表性方法可提高0.25~1.51 dB。
  • 图  1  tfh-RGAN的网络架构示意图

    图  2  L-RRDB结构示意图

    图  3  tfh-RGAN消融实验的定性分析. 1~4行分别对应tfh-GeneratorRRDB, tfh-GeneratorL-RRDB, tfh-RGANVGG128以及tfh-RGAN的幻构人脸;第5行为原始HR人脸

    图  4  tfh-RGAN与代表性方法的定性比较

    图  5  tfh-RGAN与代表性方法[4,17,18,8]在局部放大区域的定性比较

    表  1  tfh-RGAN消融实验的定量分析

    模型PSNRSSIM参数量
    tfh-GeneratorRRDB25.060.731316734915
    tfh-GeneratorL-RRDB25.000.72957138947
    tfh-RGANVGG12824.890.72997138947
    tfh-RGAN24.730.71727138947
    下载: 导出CSV

    表  2  tfh-RGAN与当前方法的定量比较

    模型URDGN[4]LCGE[17]CNN-MNCE[18]FSRNet[8]FSRGAN[8]tfh-RGAN
    PSNR (dB)23.5523.5524.3424.4823.2224.73
    SSIM0.66960.66730.68830.71330.64980.7172
    下载: 导出CSV
  • [1] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, 2014: 184–199. doi: 10.1007/978-3-319-10593-2_13.
    [2] 赵小强, 宋昭漾. 多级跳线连接的深度残差网络超分辨率重建[J]. 电子与信息学报, 2019, 41(10): 2501–2508. doi: 10.11999/JEIT190036

    ZHAO Xiaoqiang and SONG Zhaoyang. Super-resolution reconstruction of deep residual network with multi-level skip connections[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2501–2508. doi: 10.11999/JEIT190036
    [3] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Cambridge, UK, 2014: 2672–2680.
    [4] YU Xin and PORIKLI F. Ultra-resolving face images by discriminative generative networks[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 318–333. doi: 10.1007/978-3-319-46454-1_20.
    [5] LUCIC M, KURACH K, MICHALSKI M, et al. Are GANs created equal? a large-scale study[EB/OL]. https://arxiv.org/abs/1711.10337, 2018.
    [6] SHAO Wenze, XU Jingjing, CHEN Long, et al. On potentials of regularized Wasserstein generative adversarial networks for realistic hallucination of tiny faces[J]. Neurocomputing, 2019, 364: 1–15. doi: 10.1016/j.neucom.2019.07.046
    [7] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANS[EB/OL]. https://arxiv.org/abs/1704.00028, 2017.
    [8] CHEN Yu, TAI Ying, LIU Xiaoming, et al. FSRNet: End-to-end learning face super-resolution with facial priors[C]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2492–2501. doi: 10.1109/CVPR.2018.00264.
    [9] JOLICOEUR-MARTINEAU A. The relativistic discriminator: A key element missing from standard GAN[EB/OL]. https://arxiv.org/abs/1807.00734, 2018.
    [10] HE Kaiming, ZHANG Xiangyu, and REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [11] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269. doi: 10.1109/CVPR.2017.243.
    [12] HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. http://arxiv.org/abs/1704.04861, 2017.
    [13] WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]. Proceedings of the 2018 European Conference on Computer Vision, Munich, Germany, 2018: 63–79. doi: 10.1007/978-3-030-11021-5_5.
    [14] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1–14.
    [15] LIU Ziwei, LUO Ping, WANG Xiaogang, et al. Deep learning face attributes in the wild[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3730–3738. doi: 10.1109/ICCV.2015.425.
    [16] KINGMA D P and BA J. Adam: A method for stochastic optimization[EB/OL]. https://arxiv.org/abs/1412.6980, 2017.
    [17] SONG Yibing, ZHANG Jiawei, HE Shengfeng, et al. Learning to hallucinate face images via component generation and enhancement[C]. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 4537–4543.
    [18] JIANG Junjun, HU Yi, HU Jinhui, et al. Deep CNN denoiser and multi-layer neighbor component embedding for face hallucination[C]. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 771–778.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  716
  • HTML全文浏览量:  348
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 修回日期:  2020-10-18
  • 网络出版日期:  2021-08-11
  • 刊出日期:  2021-09-16

目录

    /

    返回文章
    返回