高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于RefineDet网络和霍夫变换的高速铁路接触网吊弦状态多尺度检测方法

齐冬莲 钱佳莹 闫云凤 曾晓红

齐冬莲, 钱佳莹, 闫云凤, 曾晓红. 一种基于RefineDet网络和霍夫变换的高速铁路接触网吊弦状态多尺度检测方法[J]. 电子与信息学报, 2021, 43(7): 2014-2022. doi: 10.11999/JEIT200357
引用本文: 齐冬莲, 钱佳莹, 闫云凤, 曾晓红. 一种基于RefineDet网络和霍夫变换的高速铁路接触网吊弦状态多尺度检测方法[J]. 电子与信息学报, 2021, 43(7): 2014-2022. doi: 10.11999/JEIT200357
Donglian QI, Jiaying QIAN, Yunfeng YAN, Xiaohong ZENG. A Multi-scale Detection Method for Dropper States in High-speed Railway Contact Network Based on RefineDet Network and Hough Transform[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2014-2022. doi: 10.11999/JEIT200357
Citation: Donglian QI, Jiaying QIAN, Yunfeng YAN, Xiaohong ZENG. A Multi-scale Detection Method for Dropper States in High-speed Railway Contact Network Based on RefineDet Network and Hough Transform[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2014-2022. doi: 10.11999/JEIT200357

一种基于RefineDet网络和霍夫变换的高速铁路接触网吊弦状态多尺度检测方法

doi: 10.11999/JEIT200357
基金项目: 浙江省重点研发计划(2019C01001),国家青年科学基金(62001416),中央高校基本科研业务费专项基金(2018FZA122)
详细信息
    作者简介:

    齐冬莲:女,1973年生,教授,研究方向为控制理论与控制工程、电气工程

    钱佳莹:女,1996年生,硕士生,研究方向为图像处理、深度学习目标检测

    闫云凤:女,1988年生,博士,研究方向为神经网络深度学习、图像处理

    曾晓红:女,1964年生,高级工程师,研究方向为铁道电气化与自动化

    通讯作者:

    齐冬莲 qidl@zju.edu.cn

  • 中图分类号: TN911.73; TP391.4

A Multi-scale Detection Method for Dropper States in High-speed Railway Contact Network Based on RefineDet Network and Hough Transform

Funds: The Key Research and Development Plan of Zhejiang Province (2019C01001), The National Youth Science Fund Project (62001416), The Fundamental Research Funds for the Central Universities (2018FZA122)
  • 摘要: 针对高速铁路接触网吊弦的状态检测问题,该文提出一种基于RefineDet网络和霍夫变换的吊弦多尺度定位与识别方法。通过设计RefineDet网络的粗调和精调模块对吊弦整体结构进行定位,采用霍夫变换锁定吊弦中部吊悬线所在直线,并利用旋转因子沿直线方向提取吊悬线区域;以吊悬线区域代替吊弦结构整体区域送入分类网络进行训练,通过所建立的多尺度吊弦状态检测模型,实现吊弦状态的精确识别。实验结果表明,吊弦定位模型的准确率达95.3%以上;霍夫变换可排除无效区域对吊弦状态识别的干扰,提高分类网络的训练速度,吊弦状态识别模型准确率达97.5%以上。
  • 图  1  吊弦检测定位网络结构

    图  2  EgretⅠ智能3D相机实际拍摄的接触网图像

    图  3  霍夫直线点数与长度对比图

    图  4  吊悬线周围矩形区域示意图

    图  5  吊悬线周围矩形区域提取流程图

    图  6  吊弦检测定位网络结果

    图  7  吊悬线区域提取

    图  8  3个实验训练过程损失函数变化

    图  9  吊弦状态分析热力响应图

    表  1  基于霍夫变换的吊悬线检测算法伪代码

     Input: images from RefinDet Network (himage×wimage)
     Output: coordinate pairs at end points of line segmentsM(x1,      y1),N(x2, y2)
     1: Edge detection of images by Canny operator
     2: Set θstep=1°, γstep=1 pixel; θmax=180°,
       ${\gamma _{\max } } = \sqrt { {{h} }_{ {\rm{image} } }^2 + {{w} }_{ {\rm{image} } }^2}$
     3: for ihimage, jwimage do:
     4:  if edge[i][j]==255 then:
     5:   for m∈180°/θstep do:
     6:    γ=i·cos(θstep·m/180·pi)+j·sin(θstep·m/180·pi)
     7:    n =(γ+L)/γstep
     8:    count[n, m]+=1
     9:    store[n, m]=append((i, j))
     10:   end for
     11:  end if
     12: end for
    下载: 导出CSV

    表  2  ResNet18网络结构

    层名称输出具体结构
    conv1P/2×Q/2卷积核=7×7,步长=2
    conv_2xP/4×Q/43×3最大池化,步长=2
    2×残差映射模块1
    conv_3xP/8×Q/82×残差映射模块2
    conv_4xP/16×Q/162×残差映射模块3
    conv_5xP/32×Q/322×残差映射模块4
    1×1全连接层
    下载: 导出CSV

    表  3  吊弦检测定位及状态分析数据集

    类别检测定位数据集状态分析数据集
    德系日系正常受力非正常受力
    训练集(张)20001000592317
    测试集(张)20010014980
    下载: 导出CSV

    表  4  两个网络训练参数

    检测定位网络状态分析网络
    学习率0.00050.0001
    偏移量0.00010.0001
    单次训练样本数量1616
    迭代次数120000/
    Epoch/20
    下载: 导出CSV

    表  5  RefineDet吊弦检测模型定位结果

    吊弦类型吊弦个数正确个数误检个数漏检个数准确率(%)
    德系340324271695.3
    日系100990199.0
    下载: 导出CSV

    表  6  不同网络模型在吊弦数据集上的定位结果

    网络准确率(%)召回率(%)检测速度(ms/张)
    RefineDet98.7099.25300
    CenterNet[4]94.6184.87340
    YOLOv3[11]91.6087.90300
    下载: 导出CSV

    表  7  3个实验测试集结果对比

    实验检测定位结果灰度调整霍夫变换正常受力准确率(%)非正常受力准确率(%)
    199.3388.75
    298.6691.25
    399.3397.50
    下载: 导出CSV
  • [1] LIU Xiaomin, WU Junyong, YANG Yuan, et al. Multiobjective optimization of preventive maintenance schedule on traction power system in high-speed railway[C]. 2009 Annual Reliability and Maintainability Symposium, Fort Worth, USA, 2009: 365–370.
    [2] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 2014 Computer Vision and Pattern Recognition, Columbus, USA, 2014.
    [3] LAW H and DENG Jia. CornerNet: Detecting objects as paired keypoints[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 765–781.
    [4] ZHOU Xingyi, WANG Dequan, KRÄHENBUHL P, et al. Objects as points[J]. arXiv: 1904.07850, 2019.
    [5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    [6] GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    [7] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
    [8] HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988.
    [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    [10] REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525.
    [11] REDMON J and FARHADI A. YOLOv3: An incremental improvement[J]. arXiv: 1804.02767, 2018.
    [12] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. 14th European Conference on Computer Vision, Amsterdam, Holland, 2016: 21–37.
    [13] FU Chengyang, LIU Wei, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. arXiv: 1701.06659, 2017.
    [14] 刘凯, 刘志刚, 陈隽文. 基于加速区域卷积神经网络的高铁接触网承力索底座裂纹检测研究[J]. 铁道学报, 2019, 41(7): 43–49. doi: 10.3969/j.issn.1001-8360.2019.07.006

    LIU Kai, LIU Zhigang, and CHEN Junwen. Crack detection of messenger wire supporter in catenary support devices of high-speed railway based on faster R-CNN[J]. Journal of the China Railway Society, 2019, 41(7): 43–49. doi: 10.3969/j.issn.1001-8360.2019.07.006
    [15] 李彩林, 张青华, 陈文贺, 等. 基于深度学习的绝缘子定向识别算法[J]. 电子与信息学报, 2020, 42(4): 1033–1040. doi: 10.11999/JEIT190350

    LI Cailin, ZHANG Qinghua, CHEN Wenhe, et al. Insulator orientation detection based on deep learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1033–1040. doi: 10.11999/JEIT190350
    [16] 杨红梅, 刘志刚, 韩烨, 等. 基于快速鲁棒性特征匹配的电气化铁路绝缘子不良状态检测[J]. 电网技术, 2013, 37(8): 2297–2302. doi: 10.13335/j.1000-3673.pst.2013.08.038

    YANG Hongmei, LIU Zhigang, HAN Ye, et al. Defective condition detection of insulators in electrified railway based on feature matching of speeded-up robust features[J]. Power System Technology, 2013, 37(8): 2297–2302. doi: 10.13335/j.1000-3673.pst.2013.08.038
    [17] 闵锋, 郎达, 吴涛. 基于语义分割的接触网开口销状态检测[J]. 华中科技大学学报: 自然科学版, 2020, 48(1): 77–81. doi: 10.13245/j.hust.200114

    MIN Feng, LANG Da, and WU Tao. The state detection of split pin in overhead contact system based on semantic segmentation[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2020, 48(1): 77–81. doi: 10.13245/j.hust.200114
    [18] ZHANG Shifeng, WEN Longyin, BIAN Xiao, et al. Single-shot refinement neural network for object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4203–4212.
    [19] IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 448–456.
    [20] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
    [21] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  846
  • HTML全文浏览量:  294
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 修回日期:  2021-02-21
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-07-10

目录

    /

    返回文章
    返回