高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种抗冲击噪声的对数总体最小二乘自适应滤波算法

赵海全 李磊

赵海全, 李磊. 一种抗冲击噪声的对数总体最小二乘自适应滤波算法[J]. 电子与信息学报, 2021, 43(2): 284-288. doi: 10.11999/JEIT200344
引用本文: 赵海全, 李磊. 一种抗冲击噪声的对数总体最小二乘自适应滤波算法[J]. 电子与信息学报, 2021, 43(2): 284-288. doi: 10.11999/JEIT200344
Haiquan ZHAO, Lei LI. A Logarithmic Total Least Squares Adaptive Filtering Algorithm for Impulsive Noise Suppression[J]. Journal of Electronics & Information Technology, 2021, 43(2): 284-288. doi: 10.11999/JEIT200344
Citation: Haiquan ZHAO, Lei LI. A Logarithmic Total Least Squares Adaptive Filtering Algorithm for Impulsive Noise Suppression[J]. Journal of Electronics & Information Technology, 2021, 43(2): 284-288. doi: 10.11999/JEIT200344

一种抗冲击噪声的对数总体最小二乘自适应滤波算法

doi: 10.11999/JEIT200344
基金项目: 国家自然科学基金(61871461, 61571374, 61433011),四川省科技计划基金(19YYJC0681),国家轨道交通电气化及自动化工程技术研究中心基金(NEEC-2019-A02)
详细信息
    作者简介:

    赵海全:男,1974年生,教授,主要研究方向为自适应信号处理理论、电力系统频率估计、分布式自适应网络、主动噪声控制等

    李磊:男,1994年生,硕士生,研究方向为自适应信号处理

    通讯作者:

    赵海全 hqzhao@home.swjtu.edu.cn

  • 中图分类号: TN911.72

A Logarithmic Total Least Squares Adaptive Filtering Algorithm for Impulsive Noise Suppression

Funds: The National Natural Science Foundation of China (61871461, 61571374, 61433011), The Sichuan Science and Technology Program (19YYJC0681), The National Rail Transportation Electrification and Automation Engineering Technology Research Center Foundation (NEEC-2019-A02)
  • 摘要: 在未知系统输入信号和输出信号均含有噪声的环境中,传统的自适应滤波算法,如最小均方(LMS)算法,会产生有偏估计。总体最小二乘(TLS)算法能够同时最小化输入信号与输出信号的噪声干扰,是解决此类问题的重要方法。然而,在许多实际应用中,干扰噪声可能具有冲击特性,这使得传统基于2阶统计量的自适应滤波算法,包括总体最小二乘算法性能严重恶化,以至于不能正常工作。为了解决这个问题,该文在总体最小二乘法的基础上,利用对数函数对其改进,提出了一种能够抗冲击干扰的对数总体最小二乘(L-TLS)算法。最后,通过计算机仿真实验验证了该新算法的有效性。
  • 图  1  EIV系统辨识模型

    图  2  L-TLS算法在高斯信号输入的NMSD曲线($\mu = 0.02$)

    图  3  L-TLS算法在相关信号输入的NMSD曲线($\mu = 0.02$)

    图  4  LMS, GD-TLS, RLMLS和L-TLS算法在高斯信号输入的NMSD曲线

    图  5  LMS, GD-TLS, RLMLS和L-TLS算法在相关信号输入的NMSD曲线

    表  1  L-TLS算法流程

    算法初始化${{w}}(0) = 0$
    算法实现for i=0, 1, 2
     $e(n) = \tilde d(n) - {{{w}}^{\rm{T}}}\tilde {{x}}(n)$
     $\bar {{w}} = {\left[ {\sqrt \gamma {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {{{w}}^{\rm{T}}}} \right]^{\rm{T}}}$
     $a(n) = \dfrac{ { { {\left\| {\bar {{w} }(n)} \right\|}^2}e(n)\tilde {{x} }(n){\rm{ + } }{e^2}(n){{w} }(n)} }{ { { {\left\| {\bar {{w} }(n)} \right\|}^4} + { {\left\| {\bar {{w} }(n)} \right\|}^2}\alpha {e^2}(n)} }$
     ${{w}}(n + 1) = {{w}}(n) + \mu {{a}}(n)$
    end
    下载: 导出CSV

    表  2  算法的计算复杂度

    算法加/减法乘法除法
    LMS$2L$$2L + 1$0
    RLMLS$2L + 1$$2L + 4$1
    GD-TLS$4L$$5L + 3$1
    L-TLS$4L + 1$$5L + 7$1
    下载: 导出CSV
  • SAYED A H. Fundamentals of Adaptive Filtering[M]. New York: Wiley Interscience, 2003: 72–80.
    ARABLOUEI R, WERNER S, and DOĞANÇAY K. Analysis of the gradient-descent total least-squares adaptive filtering algorithm[J]. IEEE Transactions on Signal Processing, 2014, 62(5): 1256–1264. doi: 10.1109/TSP.2014.2301135
    DAVILA C E. An efficient recursive total least squares algorithm for FIR adaptive filtering[J]. IEEE Transactions on Signal Processing, 1994, 42(2): 268–280. doi: 10.1109/78.275601
    FENG Dazheng, ZHANG Xianda, CHANG Dongxia, et al. A fast recursive total least squares algorithm for adaptive FIR filtering[J]. IEEE Transactions on Signal Processing, 2004, 52(10): 2729–2737. doi: 10.1109/TSP.2004.834260
    FENG Dazheng and ZHENG Weixing. Fast approximate inverse power iteration algorithm for adaptive total least-squares FIR filtering[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 4032–4039. doi: 10.1109/TSP.2006.880245
    ARABLOUEI R, DOĞANÇAY K, and WERNER S. Recursive total least-squares algorithm based on inverse power method and dichotomous coordinate-descent iterations[J]. IEEE Transactions on Signal Processing, 2015, 63(8): 1941–1949. doi: 10.1109/TSP.2015.2405492
    马济通, 邱天爽, 李蓉, 等. 脉冲噪声下基于Renyi熵的分数低阶双模盲均衡算法[J]. 电子与信息学报, 2018, 40(2): 378–385. doi: 10.11999/JEIT170366

    MA Jitong, QIU Tianshuang, LI Rong, et al. Dual-mode blind equalization algorithm based on Renyi entropy and fractional lower order statistics under impulsive noise[J]. Journal of Electronics &Information Technology, 2018, 40(2): 378–385. doi: 10.11999/JEIT170366
    邱天爽. 相关熵与循环相关熵信号处理研究进展[J]. 电子与信息学报, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646

    QIU Tianshuang. Development in signal processing based on correntropy and cyclic correntropy[J]. Journal of Electronics &Information Technology, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646
    SHEN Pengcheng and LI Chunguang. Minimum total error entropy method for parameter estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(15): 4079–4090. doi: 10.1109/TSP.2015.2437836
    WANG Fei, HE Yicong, WANG Shiyuan, et al. Maximum total correntropy adaptive filtering against heavy-tailed noises[J]. Signal Processing, 2017, 141: 84–95. doi: 10.1016/j.sigpro.2017.05.029
    LI Lei and ZHAO Haiquan. A robust total least mean m-estimate adaptive algorithm for impulsive noise suppression[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(4): 800–804. doi: 10.1109/TCSII.2019.2925626
    SAYIN M O, VANLI N D, and KOZAT S S. A novel family of adaptive filtering algorithms based on the logarithmic cost[J]. IEEE Transactions on Signal Processing, 2014, 62(17): 4411–4424. doi: 10.1109/TSP.2014.2333559
    XIONG Kui and WANG Shiyuan. Robust least mean logarithmic square adaptive filtering algorithms[J]. Journal of the Franklin Institute, 2019, 356(1): 654–674. doi: 10.1016/j.jfranklin.2018.10.019
    SÖDERSTRÖM T. Errors-in-variables methods in system identification[J]. Automatica, 2007, 43(6): 939–958. doi: 10.1016/j.automatica.2006.11.025
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1689
  • HTML全文浏览量:  529
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 修回日期:  2020-07-29
  • 网络出版日期:  2020-08-22
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回