高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲噪声下基于相关熵的相干分布源DOA估计新方法

蔡睿妍 杨力 钱杨

蔡睿妍, 杨力, 钱杨. 脉冲噪声下基于相关熵的相干分布源DOA估计新方法[J]. 电子与信息学报, 2020, 42(11): 2600-2606. doi: 10.11999/JEIT200325
引用本文: 蔡睿妍, 杨力, 钱杨. 脉冲噪声下基于相关熵的相干分布源DOA估计新方法[J]. 电子与信息学报, 2020, 42(11): 2600-2606. doi: 10.11999/JEIT200325
Ruiyan CAI, Li YANG, Yang QIAN. A Novel DOA Estimation Method for Coherently Distributed Sources Based on Correntropy in the Impulsive Noise[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2600-2606. doi: 10.11999/JEIT200325
Citation: Ruiyan CAI, Li YANG, Yang QIAN. A Novel DOA Estimation Method for Coherently Distributed Sources Based on Correntropy in the Impulsive Noise[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2600-2606. doi: 10.11999/JEIT200325

脉冲噪声下基于相关熵的相干分布源DOA估计新方法

doi: 10.11999/JEIT200325
基金项目: 国家自然科学基金(61671105, 61901080)
详细信息
    作者简介:

    蔡睿妍:女,1979年生,副教授,研究方向为阵列信号处理、卫星通信

    杨力:女,1982年生,教授,研究方向为空间信息网络传输技术、无线通信网络协议理论与方法

    钱杨:男,1994年生,硕士生,研究方向为网络资源优化

    通讯作者:

    杨力 yangli945@126.com

  • 中图分类号: TN911.7

A Novel DOA Estimation Method for Coherently Distributed Sources Based on Correntropy in the Impulsive Noise

Funds: The National Natural Science Foundation of China (61671105, 61901080)
  • 摘要: 针对复杂电磁环境下被动无线监测定位问题,该文提出广义相关熵的概念,推导了广义相关熵的性质,用以抑制阵列输出信号中的脉冲噪声。为了实现脉冲噪声环境下相干分布源中心DOA和扩散角的联合估计,提出基于广义相关熵的DOA估计新方法,并证明了该方法的有界性。为进一步提升算法的鲁棒性,推导了一种仅依赖阵列输出信号的自适应核函数。仿真结果表明,该算法能够实现脉冲噪声环境下相干分布源参数的联合估计,相比已有算法,具有更高的估计精度和鲁棒性。
  • 图  1  不同特征指数下的算法中心DOA估计性能曲线

    图  2  不同广义信噪比下的算法中心DOA估计性能曲线

    图  3  不同参数下的算法扩散角估计性能曲线

  • SHEN Qing, LIU Wei, CUI Wei, et al. Underdetermined DOA estimation under the compressive sensing framework: A review[J]. IEEE Access, 2016, 4: 8865–8878. doi: 10.1109/ACCESS.2016.2628869
    ZHAI Hui, ZHANG Xiaofei, ZHENG Wang, et al. DOA estimation of noncircular signals for unfolded coprime linear array: Identifiability, DOF and algorithm (May 2018)[J]. IEEE Access, 2018, 6: 29382–29390. doi: 10.1109/ACCESS.2018.2835563
    LIN Jianfeng and ZHANG Xiaofei. Direction of arrival estimation of quasi-stationary signals using unfolded coprime array[J]. IEEE Access, 2017, 5: 6538–6545. doi: 10.1109/ACCESS.2017.2695581
    SHU Feng, QIN Yaolu, LIU Tingting, et al. Low-complexity and high-resolution DOA estimation for hybrid analog and digital massive MIMO receive array[J]. IEEE Transactions on Communications, 2018, 66(6): 2487–2501. doi: 10.1109/TCOMM.2018.2805803
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    TSAKALIDES P and NIKIAS C L. Robust space-time adaptive processing (STAP) in non-Gaussian clutter environments[J]. IEE Proceedings–Radar, Sonar and Navigation, 1999, 146(2): 84–93. doi: 10.1049/ip-rsn:19990233
    NIKIAS C L and SHAO Min. Signal Processing with Alpha-stable Distributions and Applications[M]. New York, USA: John Wiley & Sons, Inc., 1995: 20–55.
    马济通, 邱天爽, 李蓉, 等. 脉冲噪声下基于Renyi熵的分数低阶双模盲均衡算法[J]. 电子与信息学报, 2018, 40(2): 378–385. doi: 10.11999/JEIT170366

    MA Jitong, QIU Tianshuang, LI Rong, et al. Dual-mode blind equalization algorithm based on Renyi entropy and fractional lower order statistics under impulsive noise[J]. Journal of Electronics &Information Technology, 2018, 40(2): 378–385. doi: 10.11999/JEIT170366
    TSAKALIDES P and NIKIAS C L. High-resolution autofocus techniques for SAR imaging based on fractional lower-order statistics[J]. IEE Proceedings - Radar, Sonar and Navigation, 2001, 148(5): 267–276. doi: 10.1049/ip-rsn:20010457
    LIU T H and MENDEL J M. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1605–1613. doi: 10.1109/78.934131
    BELKACEMI H and MARCOS S. Robust subspace-based algorithms for joint angle/Doppler estimation in non-Gaussian clutter[J]. Signal Processing, 2007, 87(7): 1547–1558. doi: 10.1016/j.sigpro.2006.12.015
    LIU Weifeng, POKHAREL P P, and PRINCIPE J C. Correntropy: Properties and applications in non-Gaussian signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5286–5298. doi: 10.1109/TSP.2007.896065
    ZHANG Jinfeng, QIU Tianshuang, SONG Aimin, et al. A novel correntropy based DOA estimation algorithm in impulsive noise environments[J]. Signal Processing, 2014, 104: 346–357. doi: 10.1016/j.sigpro.2014.04.033
    VALAEE S, CHAMPAGNE B, and KABAL P. Parametric localization of distributed sources[J]. IEEE Transactions on Signal Processing, 1995, 43(9): 2144–2153. doi: 10.1109/78.414777
    MENG Y, STOICA P, and WONG K M. Estimation of the directions of arrival of spatially dispersed signals in array processing[J]. IEE Proceedings–Radar, Sonar and Navigation, 1996, 143(1): 1–9. doi: 10.1049/ip-rsn:19960170
    邱天爽. 相关熵与循环相关熵信号处理研究进展[J]. 电子与信息学报, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646

    QIU Tianshuang. Development in signal processing based on correntropy and cyclic correntropy[J]. Journal of Electronics &Information Technology, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646
    GREENE W H. Econometric Analysis[M]. Englewood Cliffs, NJ, US: Prentice Hall Inc., 2011: 80–120.
    CHIANI M, DARDARI D, and SIMON M K. New exponential bounds and approximations for the computation of error probability in fading channels[J]. IEEE Transactions on Wireless Communications, 2003, 2(4): 840–845. doi: 10.1109/TWC.2003.814350
    CHANG S H, COSMAN P C, and MILSTEIN L B. Chernoff-type bounds for the Gaussian error function[J]. IEEE Transactions on Communications, 2011, 59(11): 2939–2944. doi: 10.1109/TCOMM.2011.072011.100049
    TSAKALIDES P and NIKIAS C L. Maximum likelihood localization of sources in noise modeled as a stable process[J]. IEEE Transactions on Signal Processing, 1995, 43(11): 2700–2713. doi: 10.1109/78.482119
    ZHANG Q T. Probability of resolution of the MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 1995, 43(4): 978–987. doi: 10.1109/78.376849
    TIAN Quan, QIU Tianshuang, LI Jingchun, et al. Robust adaptive DOA estimation method in an impulsive noise environment considering coherently distributed sources[J]. Signal Processing, 2019, 165: 343–356. doi: 10.1016/j.sigpro.2019.07.014
  • 加载中
图(3)
计量
  • 文章访问数:  1020
  • HTML全文浏览量:  341
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-28
  • 修回日期:  2020-10-19
  • 网络出版日期:  2020-10-26
  • 刊出日期:  2020-11-16

目录

    /

    返回文章
    返回