高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种低复杂度的超高阶码索引调制方法

刘芳 冯永新

刘芳, 冯永新. 一种低复杂度的超高阶码索引调制方法[J]. 电子与信息学报, 2021, 43(7): 1922-1929. doi: 10.11999/JEIT200318
引用本文: 刘芳, 冯永新. 一种低复杂度的超高阶码索引调制方法[J]. 电子与信息学报, 2021, 43(7): 1922-1929. doi: 10.11999/JEIT200318
Fang LIU, Yongxin FENG. An Ultrahigh Order Code Index Modulation Method with Low Complexity[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1922-1929. doi: 10.11999/JEIT200318
Citation: Fang LIU, Yongxin FENG. An Ultrahigh Order Code Index Modulation Method with Low Complexity[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1922-1929. doi: 10.11999/JEIT200318

一种低复杂度的超高阶码索引调制方法

doi: 10.11999/JEIT200318
基金项目: 国家自然科学基金(61501309, 61971291),辽宁省自然科学基金(2020-MS-215)
详细信息
    作者简介:

    刘芳:女,1979年生,教授,研究方向为无线通信、卫星导航

    冯永新:女,1974年生,教授,研究方向为无线通信、电子对抗

    通讯作者:

    刘芳 zhqing1019@163.com

  • 中图分类号: TN914.42

An Ultrahigh Order Code Index Modulation Method with Low Complexity

Funds: The National Natural Science Foundation of China (61501309, 61971291), The Natural Science Foundation of Liaoning Province (2020-MS-215)
  • 摘要: 为了应对直接序列扩频(DSSS)中信息传输率低的局限,出现了多进制扩频及索引调制等技术,由于此系列技术中附加信息都是通过伪码变换来映射的,因此调制阶数越大,复杂度也越大,而当系统所承受的复杂度受限时,调制阶数也就无法提升。为解决高阶信息传输率受限问题,该文提出一种低复杂度的超高阶码索引调制(UHO-CIM)方法,通过2维信息的分组来进行多码集索引,从而降低通道数量,进而通过3维信息的分组来进行循环移位索引,从而在不增加通道情况下大幅度地提高传输率,而且利用移位通道和非移位通道关系,去除环境影响。该方法不仅可以有效传输多维信息,而且与现有方法比较,复杂度大大降低,综合性能具有明显优势;此外,现有方法很难达到高阶及超高阶的信息传输,而提出的方法可实现调制阶数大于15的超高阶信息传输,从而为高效扩频通信应用提供可借鉴技术。
  • 图  1  峰均比结果

    图  2  接收概率结果

    图  3  $\lambda $=5时的误比特率对比结果

    图  4  $\lambda $=10时的误比特率对比结果

    图  5  $\lambda $为低阶时复杂度对比结果

    图  6  $\lambda $为高阶时复杂度对比结果

    图  7  $\lambda $为低阶时的PCR对比结果

    图  8  $\lambda $为高阶时的PCR对比结果

    图  9  复杂度受限时能达到的总调制阶数

    图  10  复杂度受限时PCR性能

  • [1] POLUEKTOV A, PINOMAA A, ROMANENKO A, et al. Sensitivity analysis of a PLC-based DSSS anti-islanding system in power distribution grids[J]. International Journal of Electrical Power & Energy Systems, 2019, 113: 739–747. doi: 10.1016/j.ijepes.2019.06.022
    [2] FENG Jining, YANG Xiaobo, and WANG Jun. Novel LFM jammer suppression algorithm for DSSS in FRFT domain[J]. Journal of Beijing Institute of Technology, 2019, 28(4): 783–789. doi: 10.15918/j.jbit1004-0579.18088
    [3] 张天骐, 袁帅, 刘董华, 等. 高动态环境下高阶双二进制偏移载波信号的精确捕获[J]. 电子与信息学报, 2018, 40(11): 2728–2735. doi: 10.11999/JEIT180087

    ZHANG Tianqi, YUAN Shuai, LIU Donghua, et al. Accurate acquisition of High order double binary offset carrier signals for high dynamic environment[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2728–2735. doi: 10.11999/JEIT180087
    [4] 王航, 郭静波, 王赞基. 混沌多进制直接序列扩频信号的盲解扩[J]. 清华大学学报: 自然科学版, 2009, 49(1): 13–16.

    WANG Hang, GUO Jingbo, and WANG Zanji. Chaotic M-ary direct sequence spread spectrum signals blind despreading[J]. Journal of Tsinghua University:Science and Technology, 2009, 49(1): 13–16.
    [5] ZHOU Feng, LIU Bing, NIE Donghu, et al. M-ary cyclic shift keying spread spectrum underwater acoustic communications based on virtual time-reversal mirror[J]. Sensors, 2019, 19(16): 3577. doi: 10.3390/s19163577
    [6] LIU Fang and JIA Shiyao. Decomposition-combination correlation decision mechanism for MBOK signals[J]. Wireless Personal Communications, 2020, 110(1): 207–221. doi: 10.1007/s11277-019-06721-3
    [7] 朱亮, 裴玉奎, 葛宁, 等. 超宽带信道下MBOK调制系统可达速率分析[J]. 清华大学学报: 自然科学版, 2011, 51(3): 400–404.

    ZHU Liang, PEI Yukui, GE Ning, et al. Achievable rate analysis of MBOK modulation system over UWB channels[J]. Journal of Tsinghua University:Natural and Technology, 2011, 51(3): 400–404.
    [8] BAE J N, KIM J Y, KIM G, et al. Performance of TZCD-MBOK watermarking scheme in T-DMB systems[J]. Multimedia Tools and Applications, 2012, 57(2): 359–372. doi: 10.1007/s11042-011-0740-2
    [9] 齐琳, 郭黎利. 并行组合扩频非等概超宽带系统误码性能研究[J]. 系统工程与电子技术, 2011, 33(3): 659–664. doi: 10.3969/j.issn.1001-506X.2011.03.38

    QI Lin and GUO Lili. BER performance study of non-equal probability UWB system based on parallel combinatory spread spectrum[J]. Systems Engineering and Electronics, 2011, 33(3): 659–664. doi: 10.3969/j.issn.1001-506X.2011.03.38
    [10] 刘明夺, 郭黎利, 姜晓斐. 并行组合扩频系统中Gold序列代数和相关性及优选[J]. 北京邮电大学学报, 2013, 36(4): 33–38. doi: 10.13190/jbupt.201304.31.liumd

    LIU Mingduo, GUO Lili, and JIANG Xiaofei. Correlation of superposition Gold sequences and optimized sequences selection in parallel combinatory spread spectrum system[J]. Journal of Beijing University of Posts and Telecommunications, 2013, 36(4): 33–38. doi: 10.13190/jbupt.201304.31.liumd
    [11] BASAR E. Index modulation techniques for 5G wireless networks[J]. IEEE Communications Magazine, 2016, 54(7): 168–175. doi: 10.1109/MCOM.2016.7509396
    [12] JAIN M, AGARWAL A, RAWAL D, et al. Adaptive bit and power allocation for dual mode index modulation based OFDM system[J]. Physical Communication, 2020, 40: 101093. doi: 10.1016/j.phycom.2020.101093
    [13] DATTA T, ESHWARAIAH H S, and CHOCKALINGAM A. Generalized space-and-frequency index modulation[J]. IEEE Transactions on Vehicular Technology, 2016, 65(7): 4911–4924. doi: 10.1109/TVT.2015.2451095
    [14] KADDOUM G, AHMED M F A, and NIJSURE Y. Code index modulation: A high data rate and energy efficient communication system[J]. IEEE Communications Letters, 2015, 19(2): 175–178. doi: 10.1109/LCOMM.2014.2385054
    [15] KADDOUM G and SOUJERI E. On the comparison between code-index modulation and spatial modulation techniques[C]. 2015 International Conference on Information and Communication Technology Research, Abu Dhabi, United Arab Emirates, 2015: 24–27. doi: 10.1109/ICTRC.2015.7156412.
    [16] KADDOUM G, NIJSURE Y, and TRAN H. Generalized code index modulation technique for high-data-rate communication systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7000–7009. doi: 10.1109/TVT.2015.2498040
    [17] XU Weikai, HUANG Tingting, and WANG Lin. Code-shifted differential chaos shift keying with code index modulation for high data rate transmission[J]. IEEE Transactions on Communications, 2017, 65(10): 4285–4294. doi: 10.1109/TCOMM.2017.2725261
    [18] TAN Yunsheng, XU Weikai, HUANG Tingting, et al. A multilevel code shifted differential chaos shift keying scheme with code index modulation[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(11): 1743–1747. doi: 10.1109/TCSII.2017.2764916
    [19] 葛利嘉, 江治林, 冯胜, 等. 非正交-码索引调制方法[J]. 电子与信息学报, 2018, 40(10): 2331–2336. doi: 10.11999/JEIT180023

    GE Lijia, JIANG Zhilin, FENG Sheng, et al. Non-orthogonal-code index modulation[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2331–2336. doi: 10.11999/JEIT180023
    [20] 冯胜, 杨勤, 郑鹤, 等. 广义空—码联合索引调制[J]. 计算机应用研究, 2019, 36(7): 2112–2115. doi: 10.19734/j.issn.1001-3695.2018.01.0046.

    FENG Sheng, YANG Qin, ZHENG He, et al. Generalized space code joint index modulation[J]. Application Research of Computers, 2019, 36(7): 2112–2115. doi: 10.19734/j.issn.1001-3695.2018.01.0046.
  • 加载中
图(10)
计量
  • 文章访问数:  1025
  • HTML全文浏览量:  325
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-28
  • 修回日期:  2020-12-09
  • 网络出版日期:  2020-12-23
  • 刊出日期:  2021-07-10

目录

    /

    返回文章
    返回