高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非平稳信道下的鲁棒数据链优化设计综述——带限环境下的混沌传输系统

苗美媛 宋丹 徐位凯 湛佳 王琳

苗美媛, 宋丹, 徐位凯, 湛佳, 王琳. 非平稳信道下的鲁棒数据链优化设计综述——带限环境下的混沌传输系统[J]. 电子与信息学报, 2021, 43(1): 1-12. doi: 10.11999/JEIT200311
引用本文: 苗美媛, 宋丹, 徐位凯, 湛佳, 王琳. 非平稳信道下的鲁棒数据链优化设计综述——带限环境下的混沌传输系统[J]. 电子与信息学报, 2021, 43(1): 1-12. doi: 10.11999/JEIT200311
Meiyuan MIAO, Dan SONG, Weikai XU, Jia ZHAN, Lin WANG. Survey of Optimization Design for Robust Data Link over Non-stationary Channels-chaotic Transmission Systems over Band-limited Environments[J]. Journal of Electronics & Information Technology, 2021, 43(1): 1-12. doi: 10.11999/JEIT200311
Citation: Meiyuan MIAO, Dan SONG, Weikai XU, Jia ZHAN, Lin WANG. Survey of Optimization Design for Robust Data Link over Non-stationary Channels-chaotic Transmission Systems over Band-limited Environments[J]. Journal of Electronics & Information Technology, 2021, 43(1): 1-12. doi: 10.11999/JEIT200311

非平稳信道下的鲁棒数据链优化设计综述——带限环境下的混沌传输系统

doi: 10.11999/JEIT200311
基金项目: 国家自然科学基金(61671395, 61871337)
详细信息
    作者简介:

    苗美媛:女,1991年生,博士生,研究方向为混沌调制,带限传输系统

    宋丹:女,1994年生,博士生,研究方向为联合信源信道编码

    徐位凯:男,1976年生,副教授,研究方向为超宽带与混沌通信

    湛佳:女,1991年生,博士生,研究方向为联合信源信道编码

    王琳:男,1963年生,教授,博士生导师,研究方向为信息论与编码,数字通信理论

    通讯作者:

    王琳 wanglin@xmu.edu.cn

  • 中图分类号: TN911.3

Survey of Optimization Design for Robust Data Link over Non-stationary Channels-chaotic Transmission Systems over Band-limited Environments

Funds: The National Natural Science Foundation of China (61671395, 61871337)
  • 摘要: 近年来,以物联网(IoT)为基础的6G的相关技术研究引起了研究单位、高校和工业界的广泛关注,其中还有一些重要的问题亟待解决。如何以较低的成本保证带限非平稳环境下数据传输的鲁棒性是一个非常重要的问题。该文介绍了一种低复杂度、低功耗的调制解调传输技术,即差分混沌键控(DCSK)调制。该文将分别描述和分析该系统在标准和非标准传输环境下的特性、优势及其改进方法。同时将提供一些基于多元DCSK(MDCSK)的新型编码调制方案来提高系统在带限环境下的传输质量,这将有助于在低功耗、低成本的网络上,特别是在非平稳信道上提升系统的鲁棒性。结果表明这些优化工作显著地改善了系统性能。之后针对非平稳信道特性系统参数的优化与自适应传输机制将成为未来研究的热点。
  • 图  1  MDCSK的系统框图

    图  2  MDCSK和MPSK-DCSK在扩频因子β=60,M=2, 4, 8, 16, 32的误码率性能曲线

    图  3  一般化MR-8元DCSK星座及其灰编码映射与判决边界

    图  4  AWGN信道下,2/4/8/16-DCSK系统的BER性能

    图  5  方形星座图与判决边界

    图  6  多径Rayleigh衰落信道下不同系统的误码率

    图  7  不同信道下误码率比较

    图  8  码率1/2的ARJA-16-DC-BICM与方形的4-DCSK的误码率性能比较

    图  9  BICM DS/SS-5 DC-BICM系统误码率比较

    图  10  多径PLC信道下BER性能比较

    图  11  PLC中误码率比较

    图  12  时变UWA信道3个通道场景及脉冲响应

    图  13  不同UWA信道下MC-CS-DCSK,OFDM-CS-DCSK和MM-DCSK的误码率性能比较

    表  1  EXIT码型搜索算法流程

     初始化:
     设定 预先设定信息比特GPs g1,g2,···,gm,
     设定 Gr={所有可能的gr}, SNR, k, $\varGamma = \{ \phi \}$
     程序:
     (1) Gr选择一个新的gr
     (2)当SNR=$\gamma $时,计算选择的GPs的EXIT曲线
     (3) 如果通道打开,则令SNR=SNR-k,并且执行第(2)步;如果通道关闭,则在$\Gamma $中保存$\gamma + k/2$作为当前选定的GPs的预测阈值,并执行
       第(4)步
     (4) 如果在GPs中有未测试的元素,则返回第(2)步,否则执行第(5)步
     (5) 搜索最小值并保存到$\varGamma$中,其对应的GPs这是我们要寻找的好的码型结构
    下载: 导出CSV

    表  2  多径PLC信道参数

    路径编号信道增益延时(τ(Tc))
    10.3645–0.4860i0
    20.3037+0.4252i2
    30.1822–0.3645i5
    40.3645–0.2430i1
    下载: 导出CSV
  • DEDIEU H, KENNEDY M P, and HASLER M. Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits[J]. IEEE Transactions on Circuits and Systems Ⅱ: Analog and Digital Signal Processing, 1993, 40(10): 634–642. doi: 10.1109/82.246164
    KOLUMBAN G, VIZVARI B, SCHWARZ W, et al. Differential chaos shift keying: A robust coding for chaos communication[C]. The 4th International Workshop on Nonlinear Dynamics of Electronic Systems, Seville, Spain: NDES, 1996: 87–92.
    KENNEDY M P, KOLUMBAN G, KIS G, et al. Performance evaluation of FM-DCSK modulation in multipath environments[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(12): 1702–1711. doi: 10.1109/81.899922
    WANG Lin, ZHANG Chaoxian, and CHEN Guanrong. Performance of an SIMO FM-DCSK communication system[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2008, 55(5): 457–461. doi: 10.1109/TCSⅡ.2007.914895
    KADDOUM G, SOUJERI E, ARCILA C, et al. I-DCSK: An improved noncoherent communication system architecture[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2015, 62(9): 901–905. doi: 10.1109/TCSⅡ.2015.2435831
    YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: A simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2014, 61(12): 967–971. doi: 10.1109/TCSⅡ.2014.2356914
    KADDOUM G and SOUJERI E. NR-DCSK: A noise reduction differential chaos shift keying system[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2016, 63(7): 648–652. doi: 10.1109/TCSⅡ.2016.2532041
    KADDOUM G, RICHARDSON F D, and GAGNON F. Design and analysis of a multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2013, 61(8): 3281–3291. doi: 10.1109/TCOMM.2013.071013.130225
    HUANG Tingting, WANG Lin, XU Weikai, et al. A multi-carrier M-Ary differential chaos shift keying system with low PAPR[J]. IEEE Access, 2017, 5: 18793–18803. doi: 10.1109/ACCESS.2017.2752238
    CHENG Guixian, WANG Lin, CHEN Qiwang, et al. Design and performance analysis of generalised carrier index M-ary differential chaos shift keying modulation[J]. IET Communications, 2018, 12(11): 1324–1331. doi: 10.1049/iet-com.2017.0800
    YANG Hua, JIANG Guoping, TANG W K S, et al. Multi-carrier differential chaos shift keying system with subcarriers allocation for noise reduction[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65(11): 1733–1737. doi: 10.1109/TCSⅡ.2017.2752754
    LU Yazhen, MIAO Meiyuan, WANG Lin, et al. A multilevel code-shifted differential chaos shift keying system with reference diversity[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2020, 67(11): 2462–2466. doi: 10.1109/TCSⅡ.2020.2964883
    KADDOUM G and GAGNON F. Design of a high-data-rate differential chaos-shift keying system[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2012, 59(7): 448–452. doi: 10.1109/TCSⅡ.2012.2198982
    CHEN Pingping, WANG Lin, and CHEN Guanrong. DDCSK-Walsh coding: A reliable chaotic modulation-based transmission technique[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2012, 59(2): 128–132. doi: 10.1109/TCSⅡ.2011.2180109
    CHEN Pingping, SHI Long, FANG Yi, et al. A coded DCSK modulation system over Rayleigh fading channels[J]. IEEE Transactions on Communications, 2018, 66(9): 3930–3942. doi: 10.1109/TCOMM.2018.2827032
    HUANG Tingting, WANG Lin, XU Weikai, et al. Multilevel code-shifted differential-chaos-shift-keying system[J]. IET Communications, 2016, 10(10): 1189–1195. doi: 10.1049/iet-com.2015.1109
    MIAO Meiyuan, WANG Lin, KATZ M, et al. Hybrid modulation scheme combining PPM with differential chaos shift keying modulation[J]. IEEE Wireless Communications Letters, 2019, 8(2): 430–433. doi: 10.1109/LWC.2018.2871137
    XU Weikai and WANG Lin. CIM-DCSK: A differential chaos shift keying scheme with code-index modulation[C]. The 16th International Symposium on Communications and Information Technologies, Qingdao, China, 2016: 26–28. doi: 10.1109/ISCIT.2016.7751600.
    TAN Yunsheng, XU Weikai, HUANG Tingting, et al. A multilevel code shifted differential chaos shift keying scheme with code index modulation[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65(11): 1743–1747. doi: 10.1109/TCSⅡ.2017.2764916
    XU Weikai, HUANG Tingting, and WANG Lin. Code-shifted differential chaos shift keying with code index modulation for high data rate transmission[J]. IEEE Transactions on Communications, 2017, 65(10): 4285–4294. doi: 10.1109/TCOMM.2017.2725261
    SOUJERI E, KADDOUM G, AU M, et al. Frequency index modulation for low complexity low energy communication networks[J]. IEEE Access, 2017, 5: 23276–23287. doi: 10.1109/ACCESS.2017.2713721
    HERCEG M, VRANJEŠ D, KADDOUM G, et al. Commutation code index DCSK modulation technique for high-data-rate communication systems[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65(12): 1954–1958. doi: 10.1109/TCSⅡ.2018.2817930
    YANG Hua, TANG Wallace K S, CHEN Guanrong, et al. System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(1): 146–156. doi: 10.1109/TCSI.2015.2510622
    GALIAS Z and MAGGIO G M. Quadrature chaos-shift keying: Theory and performance analysis[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, 48(12): 1510–1519. doi: 10.1109/TCSI.2001.972858
    WANG Shiliang and WANG Xiaodong. M-DCSK-based chaotic communications in MIMO multipath channels with no channel state information[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2010, 57(12): 1001–1005. doi: 10.1109/TCSⅡ.2010.2083091
    WANG Lin, CAI Guofa, and CHEN G R. Design and performance analysis of a new multiresolution M-Ary differential chaos shift keying communication system[J]. IEEE Transactions on Wireless Communications, 2015, 14(9): 5197–5208. doi: 10.1109/TWC.2015.2434820
    CAI Guofa, FANG Yi, HAN Guojun, et al. A square-constellation-based M-Ary DCSK communication system[J]. IEEE Access, 2016, 4: 6295–6303. doi: 10.1109/ACCESS.2016.2612224
    CAI Guofa, FANG Yi, and HAN Guojun. Design of an adaptive multiresolution M-Ary DCSK system[J]. IEEE Communications Letters, 2017, 21(1): 60–63. doi: 10.1109/LCOMM.2016.2614682
    CAI Guofa, FANG Yi, HAN Guojun, et al. A new hierarchical M-Ary DCSK communication system: Design and Analysis[J]. IEEE Access, 2017, 5: 17414–17424. doi: 10.1109/ACCESS.2017.2740973
    GHOSH M. Analysis of the effect of impulse noise on multicarrier and single carrier QAM systems[J]. IEEE Transactions on Communications, 1996, 44(2): 145–147. doi: 10.1109/26.486604
    HE Yanchun WANG Lin, ZHOU Chenglong, et al. A novel trellis-coded differential chaotic modulation system[C]. 2017 Wireless Telecommunications Symposium, Chicago, USA, 2017: 1–6. doi: 10.1109/WTS.2017.7943522.
    ZHOU Chenglong, HU Wei, WANG Lin, et al. Turbo trellis-coded differential chaotic modulation[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65(2): 191–195. doi: 10.1109/TCSⅡ.2017.2709347
    ZHOU Chenglong, HU Wei, WANG Lin, et al. IQ-interleaved turbo trellis-coded differential chaotic modulation scheme[C]. The 23rd Asia-Pacific Conference on Communications, Perth, Australia, 2017: 1–6. doi: 10.23919/APCC.2017.8304013.
    ZHANG Bangquan, WANG Lin, ZHOU Chenglong, et al. Serial concatenated trellis-coded differential chaotic modulation[C]. The 29th IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Bologna, Italy, 2018: 1–5. doi: 10.1109/PIMRC.2018.8580688.
    ZHAN Jia WANG Lin, KATZ M, et al. A differential chaotic bit-interleaved coded modulation system over multipath Rayleigh channels[J]. IEEE Transactions on Communications, 2017, 65(12): 5257–5265. doi: 10.1109/TCOMM.2017.2719030
    DIVSALAR D and JONES C. Protograph based low error floor LDPC coded modulation[C]. 2005 IEEE Military Communications Conference, Atlantic City, USA, 2005: 378–385. doi: 10.1109/MILCOM.2005.1605713.
    ABBASFAR A, DIVSALAR D, and YAO K. Accumulate-repeat-accumulate codes[J]. IEEE Transactions on Communications, 2007, 55(4): 692–702. doi: 10.1109/TCOMM.2007.894109
    洪少华, 王琳. 基于原模图LDPC码的分布式联合信源信道编码[J]. 电子与信息学报, 2017, 39(11): 2594–2599. doi: 10.11999/JEIT170113

    HONG Shaohua and WANG Lin. Protograph LDPC based distributed joint source channel coding[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2594–2599. doi: 10.11999/JEIT170113
    陶雄飞, 王跃东, 柳盼. 基于变量节点更新的LDPC码加权比特翻转译码算法[J]. 电子与信息学报, 2016, 38(3): 688–693. doi: 10.11999/JEIT150720

    TAO Xiongfei, WANG Yuedong, and LIU Pan. Weighted bit-flipping decoding algorithm for LDPC codes based on updating of variable nodes[J]. Journal of Electronics &Information Technology, 2016, 38(3): 688–693. doi: 10.11999/JEIT150720
    KADDOUM G and TADAYON N. Differential chaos shift keying: A robust modulation scheme for power-line communications[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2017, 64(1): 31–35. doi: 10.1109/TCSⅡ.2016.2546901
    ZHENG Mingyang, HUANG Tingting, WANG Lin, et al. Performance analysis of M-ary DCSK system over narrow band power-line communications[C]. The 23rd Asia-Pacific Conference on Communications, Perth, Australia, 2017: 1–6. doi: 10.23919/APCC.2017.8304008.
    CHENG LIN and FERREIRA H C. Time-diversity permutation coding scheme for narrow-band power-line channels[C]. 2017 IEEE International Symposium on Power Line Communications and its Applications, Beijing, China, 2012: 378–385. doi: 10.1109/ISPLC.2012.6201335.
    ZHANG Yuyang, WANG Lin, CHEN Qiwang, et al. Optimization of constellation-based DC-BICM systems over power line channels[C]. The 29th IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Bologna, Italy, 2018: 576–577. doi: 10.1109/PIMRC.2018.8580673.
    CHEN Qiwang, WANG Lin, LÜ Yibo, et al. Designing protograph-based LDPC Codes for iterative receivers on M-ary DCSK Systems[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2018, 65(4): 466–470. doi: 10.1109/TCSⅡ.2017.2741062
    杨帆, 贾辉, 刘宝树, 等. α稳定脉冲噪声下宽带电力线通信系统性能分析[J]. 电子与信息学报, 2019, 41(6): 1374–1380. doi: 10.11999/JEIT180261

    YANG Fan, JIA Hui, LIU Baoshu, et al. Performance analysis of broadband power-line communications systems under the alpha-stable impulsive noise[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1374–1380. doi: 10.11999/JEIT180261
    罗忠涛, 詹燕梅, 郭人铭, 等. 脉冲噪声中基于指数函数的可变拖尾非线性变换设计[J]. 电子与信息学报, 2020, 42(4): 932–940. doi: 10.11999/JEIT190401

    LUO Zhongtao, ZHAN Yanmei, GUO Renming, et al. Variable tailing nonlinear transformation design based on exponential function in impulsive noise[J]. Journal of Electronics &Information Technology, 2020, 42(4): 932–940. doi: 10.11999/JEIT190401
    CHEN Menglei, XU Weikai, WANG Deiqing, et al. Multi-carrier chaotic communication scheme for underwater acoustic communications[J]. IET Communications, 2019, 13(14): 2097–2105. doi: 10.1049/iet-com.2018.5524
    QU Fengzhou, QIN Xiangzhao, YANG Liuqing, et al. Spread-spectrum method using multiple sequences for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2018, 43(4): 1215–1226. doi: 10.1109/JOE.2017.2750298
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1103
  • HTML全文浏览量:  357
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-27
  • 修回日期:  2020-07-08
  • 网络出版日期:  2020-07-22
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回