高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单星多波束天线下基于压缩感知的多目标干扰定位

张轶 翟盛华 陶海红

张轶, 翟盛华, 陶海红. 单星多波束天线下基于压缩感知的多目标干扰定位[J]. 电子与信息学报, 2021, 43(7): 1872-1878. doi: 10.11999/JEIT200307
引用本文: 张轶, 翟盛华, 陶海红. 单星多波束天线下基于压缩感知的多目标干扰定位[J]. 电子与信息学报, 2021, 43(7): 1872-1878. doi: 10.11999/JEIT200307
Yi ZHANG, Shenghua ZHAI, Haihong TAO. Multi-target Interference Localization Using Single Satellite Multi-beam Antenna Based on Compressive Sensing[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1872-1878. doi: 10.11999/JEIT200307
Citation: Yi ZHANG, Shenghua ZHAI, Haihong TAO. Multi-target Interference Localization Using Single Satellite Multi-beam Antenna Based on Compressive Sensing[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1872-1878. doi: 10.11999/JEIT200307

单星多波束天线下基于压缩感知的多目标干扰定位

doi: 10.11999/JEIT200307
基金项目: 国家自然科学基金(61771015)
详细信息
    作者简介:

    张轶:男,1986年生,工程师,研究方向为干扰检测与定位处理

    翟盛华:男,1978年生,研究员,研究方向为卫星通信与测控技术

    陶海红:女,1976年生,教授,研究方向为雷达信号处理、运动目标检测

    通讯作者:

    张轶 zhangyi1290@163.com

  • 中图分类号: TN927

Multi-target Interference Localization Using Single Satellite Multi-beam Antenna Based on Compressive Sensing

Funds: The National Natural Science Foundation of China (61771015)
  • 摘要: 针对卫星干扰处理中的多目标定位问题,该文提出基于压缩感知的定位方法。该方法利用目标的空间稀疏性,以及多波束天线在不同信号源方向上的增益不同,仅需要测量接收信号强度便可实现多个干扰的位置识别。研究结果表明,定位性能与节点分布、目标个数、波束覆盖半径、判决门限有关。在给定参数及原对偶内点算法下,该方法可实现1~4个干扰源的空域定位,在信噪比为20 dB时定位精度达到7.7 km,优于经典的旋转干涉仪和空间谱估计测向方法。
  • 图  1  多波束四色复用示意图

    图  2  总体框架结构

    图  3  不同干扰数的识别概率

    图  4  不同节点数下定位性能与干扰数仿真结果

    图  5  不同覆盖半径下定位性能与判决门限仿真结果

    图  6  不同定位方法下定位误差与信噪比仿真结果

    表  1  仿真参数配置

    固定参数取值调整参数取值
    波束数M19载波频率f(GHz)3.60~3.75
    天线口径D(m)14功率系数k1~5
    天线效率$\eta $0.6节点数N400
    蜂窝边长l(km)240干扰数K4
    区域半径R(km)1050覆盖半径r(km)4l
    搜索半径s(km)30判决门限T0.2
    参考功率P01信噪比(dB)20
    下载: 导出CSV

    表  2  评价指标与关键参数对应关系

    定位成功率$\rho $定位误差$\delta $
    节点数N
    干扰数K+
    覆盖半径r+
    判决门限T/
    下载: 导出CSV
  • [1] 易克初, 李怡, 孙晨华, 等. 卫星通信的近期发展与前景展望[J]. 通信学报, 2015, 36(6): 157–172. doi: 10.11959/j.issn.1000-436x.2015223

    YI Kechu, LI Yi, SUN Chenhua, et al. Recent development and its prospect of satellite communications[J]. Journal on Communications, 2015, 36(6): 157–172. doi: 10.11959/j.issn.1000-436x.2015223
    [2] 郝才勇. 卫星干扰处理技术综述[J]. 电信科学, 2017, 8(1): 106–113. doi: 10.11959/j.issn.1000-0801.2017018

    HAO Caiyong. A survey of mitigating satellite interference technology[J]. Telecommunications Science, 2017, 8(1): 106–113. doi: 10.11959/j.issn.1000-0801.2017018
    [3] 孙霆, 董春曦, 毛昱. 一种基于半定松弛技术的TDOA-FDOA无源定位算法[J]. 电子与信息学报, 2020, 42(7): 1599–1605. doi: 10.11999/JEIT190435

    SUN Ting, DONG Chunxi, and MAO Yu. A TDOA-FDOA passive positioning algorithm based on the semi-definite relaxation technique[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1599–1605. doi: 10.11999/JEIT190435
    [4] 孙光才, 王裕旗, 高昭昭, 等. 一种基于短合成孔径的双星干涉精确定位方法[J]. 电子与信息学报, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940

    SUN Guangcai, WANG Yuqi, GAO Zhaozhao, et al. A dual satellite interferometric precise localization method based on short synthetic aperture[J]. Journal of Electronics &Information Technology, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940
    [5] 张金秀, 陶海红, 王渊. 一种基于双基线旋转的改进干涉仪定位算法[J]. 北京理工大学学报, 2018, 38(3): 320–324. doi: 10.15918/j.tbit1001-0645.2018.03.016

    ZHANG Jinxiu, TAO Haihong, and WANG Yuan. An improved locating algorithm based on double baselines rotating interferometer[J]. Transactions of Beijing Institute of Technology, 2018, 38(3): 320–324. doi: 10.15918/j.tbit1001-0645.2018.03.016
    [6] ADEOGUN R O. A robust music based scheme for interference location in satellite systems with multibeam antennas[J]. International Journal of Computer Applications, 2013, 82(12): 1–6. doi: 10.5120/14165-2322
    [7] 徐义, 郭福成, 冯道旺. 一种单星仅测TOA无源定位方法[J]. 宇航学报, 2010, 31(2): 502–508. doi: 10.3873/j.issn.1000-1328.2010.02.031

    XU Yi, GUO Fucheng, and FENG Daowang. A new satellite passive localization method using TOA measurement only[J]. Journal of Astronautics, 2010, 31(2): 502–508. doi: 10.3873/j.issn.1000-1328.2010.02.031
    [8] HE Chao, XIE Zhidong, BIAN Dongming, et al. Study of interference localization using single satellite based on signal strength distribution in multi-beam antenna for satellite communications system[J]. International Journal of Distributed Sensor Networks, 2018, 14(5): 16–27. doi: 10.1177/1550147718774015
    [9] CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
    [10] CEVHER V, DUARTE M F, and BARANIUK R G. Distributed target localization via spatial sparsity[C]. The 2008 16th European Signal Processing Conference, Lausanne, Switzerland: IEEE, 2008: 1–5. doi: 10.5281/zenodo.41257.
    [11] 余东平, 郭艳, 李宁, 等. 压缩感知多目标无源定位中的字典适配方法[J]. 电子与信息学报, 2019, 41(4): 865–871. doi: 10.11999/JEIT180531

    YU Dongping, GUO Yan, LI Ning, et al. Dictionary refinement method for compressive sensing based multi-target device-free localization[J]. Journal of Electronics &Information Technology, 2019, 41(4): 865–871. doi: 10.11999/JEIT180531
    [12] 游康勇, 杨立山, 郭文彬. 无线传感器网络下基于压缩感知的多目标分层贪婪匹配定位[J]. 自动化学报, 2019, 45(3): 480–489. doi: 10.16383/j.aas.2018.c170237

    YOU Kangyong, YANG Lishan, and GUO Wenbin. Hierarchical greedy matching pursuit for multi-target localization in wireless sensor networks using compressive sensing[J]. Acta Automatica Sinica, 2019, 45(3): 480–489. doi: 10.16383/j.aas.2018.c170237
    [13] CAINI C, CORAZZA G E, FALCIASECCA G, et al. A spectrum- and power-efficient EHF mobile satellite system to be integrated with terrestrial cellular systems[J]. IEEE Journal on Selected Areas in Communications, 1992, 10(8): 1315–1325. doi: 10.1109/49.166759
    [14] CANDES E J and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203–4215. doi: 10.1109/TIT.2005.858979
    [15] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441.
    [16] CANDÈS E J, ROMBERG J K, and TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207–1223. doi: 10.1002/cpa.20124
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1083
  • HTML全文浏览量:  342
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-24
  • 修回日期:  2020-12-04
  • 网络出版日期:  2020-12-19
  • 刊出日期:  2021-07-10

目录

    /

    返回文章
    返回