高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多任务协同优化学习高分辨SAR稀疏自聚焦成像算法

杨磊 张苏 黄博 盖明慧 李埔丞

杨磊, 张苏, 黄博, 盖明慧, 李埔丞. 多任务协同优化学习高分辨SAR稀疏自聚焦成像算法[J]. 电子与信息学报, 2021, 43(9): 2711-2719. doi: 10.11999/JEIT200300
引用本文: 杨磊, 张苏, 黄博, 盖明慧, 李埔丞. 多任务协同优化学习高分辨SAR稀疏自聚焦成像算法[J]. 电子与信息学报, 2021, 43(9): 2711-2719. doi: 10.11999/JEIT200300
Lei YANG, Su ZHANG, Bo HUANG, Minghui GAI, Pucheng LI. Multi-task Learning of Sparse Autofocusing for High-Resolution SAR Imagery[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2711-2719. doi: 10.11999/JEIT200300
Citation: Lei YANG, Su ZHANG, Bo HUANG, Minghui GAI, Pucheng LI. Multi-task Learning of Sparse Autofocusing for High-Resolution SAR Imagery[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2711-2719. doi: 10.11999/JEIT200300

多任务协同优化学习高分辨SAR稀疏自聚焦成像算法

doi: 10.11999/JEIT200300
基金项目: 国家自然科学基金(61601470),天津市自然科学基金(16JCYBJC41200),预研基金(61406190101)
详细信息
    作者简介:

    杨磊:男,1984年生,副教授,研究方向为高分辨SAR成像及机器学习理论应用

    张苏:女,1996年生,硕士生,研究方向为高分辨SAR成像及优化学习理论

    黄博:男,1986年生,博士生,研究方向为雷达高度表系统及信号处理

    盖明慧:女,1997年生,硕士生,研究方向为高分辨SAR成像及优化学习理论

    李埔丞:男,1992年生,博士生,研究方向为高分辨SAR成像及优化学习理论

    通讯作者:

    杨 磊 yanglei840626@163.com

  • 中图分类号: TN957.52

Multi-task Learning of Sparse Autofocusing for High-Resolution SAR Imagery

Funds: The National Natural Science Foundation of China(61601470), The Natural Science Foundation of Tianjin, China (16JCYBJC41200), The Equipment Pre-research Fund(61406190101)
  • 摘要: 针对传统高分辨合成孔径雷达(SAR)稀疏自聚焦成像算法难以有效平衡稀疏与聚焦特征的问题,该文提出一种基于交替方向多乘子方法(ADMM)的多任务协同优化学习稀疏自聚焦(MtL-SA)算法。该算法通过引入熵范数表征SAR成像结果聚焦特征,在ADMM优化框架下,利用近端算法求解聚焦特征解析解。针对原熵范数正则优化目标函数的非凸问题,该文合理设计代价函数,从而保证熵范数近端算子的闭合解析解。同时,应用$ \ell {_1}$范数表征成像结果稀疏特征,并建立面向复数SAR成像数据的复数软阈值近端算子。该文所提MtL-SA成像算法可实现对目标场景后向散射场对应稀疏特征和聚焦特征的解析求解,并有效提升自聚焦算法的可靠性和稳健性。两种特征增强处理相互调和,保证了算法运行过程中有效降低误差传播,进而保证联合特征增强精度。仿真及实测机载SAR成像数据实验,验证了算法的有效性和实用性,同时应用相变分析方法分别定量和定性地分析了该文所提算法相比其他传统算法的优越性。
  • 图  1  SAR几何模型示意图

    图  2  仿真实验结果

    图  3  实测数据实验结果

    图  4  2维等高线对比图

    图  5  信噪比-降采样率相变热力图

    表  1  MtL-SA算法流程

     步骤1  设定初值${ {\boldsymbol{X} } }^{0}={ {\boldsymbol{Z} } }^{0}={ {\boldsymbol{D} } }^{0}={{{\textit{0}}} },\;k=0,\;G{=2}$,设定迭代停止准则,开始循环。
     步骤2  全局优化:${\boldsymbol{X}}$更新运算${ {\boldsymbol{X} }^{k + 1} } = \left[ { { {\boldsymbol{A} }^{\rm{H} } }{ {\boldsymbol{E} }^{\rm{H} } }{\boldsymbol{Y} } + {\rho _1}\left( { { {\boldsymbol{Z} }_1}^k + { {\boldsymbol{D} }_1}^k} \right) + {\rho _2}\left( { { {\boldsymbol{Z} }_2}^k + { {\boldsymbol{D} }_2}^k} \right)} \right] \cdot {\left( { { {\boldsymbol{A} }^{\rm{H} } }{\boldsymbol{A} } + \rho G{\boldsymbol{I} } } \right)^{ - 1} }\quad \quad \quad \quad$
     步骤3  局部优化:${{\boldsymbol{Z}}_1}$, ${{\boldsymbol{D}}_1}$, ${{\boldsymbol{Z}}_2}$和${{\boldsymbol{D}}_2}$顺次更新运算
     ${\rm{for }}\;\;g = G$
     ${\boldsymbol{Z} }_{\rm{1} }^{k + 1} = {\left( { { {\boldsymbol{E} }^{k + 1} } } \right)^{\rm{H} } }{ {\boldsymbol{A} }^{\rm{H} } }{\boldsymbol{Y} },\;{\boldsymbol{D} }_{\rm{1} }^{k + 1} = {\boldsymbol{D} }_{\rm{1} }^k - { {\boldsymbol{X} }^{k + 1} } + {\boldsymbol{Z} }_{\rm{1} }^{k + 1}\quad \quad \quad \quad \quad$
     ${\boldsymbol{Z} }_2^{k + 1} = {\rm{pro} }{ {\rm{x} }_{ { { {\lambda _2} } / \rho } } }\left[ { { {\boldsymbol{W} }^{k + 1} } } \right]{\rm{, } }{\boldsymbol{D} }_2^{k + 1} = {\boldsymbol{D} }_2^k - { {\boldsymbol{X} }^{k + 1} } + {\boldsymbol{Z} }_2^{k + 1}\quad \quad \quad \quad$
     ${\rm{end}}$
     ${{\boldsymbol{Z}}^{k + 1}} = \left[ {{\boldsymbol{Z}}_1^{k + 1}\;{\boldsymbol{Z}}_2^{k + 1}} \right],\;{{\boldsymbol{D}}^{k + 1}} = \left[ {{\boldsymbol{D}}_1^{k + 1}\;{\boldsymbol{D}}_2^{k + 1}} \right],\;k = k + 1$
     步骤4 当残差小于加性噪声方差时,跳至步骤5,迭代结束。否则,跳至步骤2。
     步骤5  输出联合稀疏聚焦特征增强后的图像数据${\boldsymbol{X}}$。
    下载: 导出CSV
  • [1] 闫贺, 王珏, 黄佳, 等. 基于二维速度搜索的星载SAR运动目标聚焦算法研究[J]. 电子与信息学报, 2019, 41(6): 1287–1293. doi: 10.11999/JEIT180663

    YAN He, WANG Jue, HUANG Jia, et al. A moving-targets detection algorithm for spaceborne SAR system based on two-dimensional velocity search method[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1287–1293. doi: 10.11999/JEIT180663
    [2] 李煜, 陈杰, 张渊智. 合成孔径雷达海面溢油探测研究进展[J]. 电子与信息学报, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468

    LI Yu, CHEN Jie, and ZAHNG Yuanzhi. Progress in research on marine oil spills detection using synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2019, 41(3): 751–762. doi: 10.11999/JEIT180468
    [3] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [4] 田鹤, 于海锋, 朱宇, 等. 基于频域稀疏压缩感知的星载SAR稀疏重航过3维成像[J]. 电子与信息学报, 2020, 42(8): 2021–2028. doi: 10.11999/JEJT190638

    TIAN He, YU Haifeng, ZHU Yu, et al. Sparse flight 3-D imaging of spaceborne SAR based on frequency domain sparse compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(8): 2021–2028. doi: 10.11999/JEJT190638
    [5] YANG Lei, ZHAO Lifan, BI Guoan, et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2254–2267. doi: 10.1109/TGRS.2015.2498158
    [6] ALONSO M T, LOPEZ-DEKKER P, and MALLORQUI J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285–4295. doi: 10.1109/TGRS.2010.2051231
    [7] ZHAO Lifan, WANG Lu, BI Guoan, et al. An autofocus technique for high-resolution inverse synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6392–6403. doi: 10.1109/TGRS.2013.2296497
    [8] 张群英, 江兆凤, 李超, 等. 太赫兹合成孔径雷达成像运动补偿算法[J]. 电子与信息学报, 2017, 39(1): 129–137. doi: 10.11999/JEIT160201

    ZHANG Qunying, JIANG Zhaofeng, LI Chao, et al. Motion compensation imaging algorithm of terahertz synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2017, 39(1): 129–137. doi: 10.11999/JEIT160201
    [9] ZHOU Song, YANG Lei, ZHAO Lifan, et al. Quasi-polar-based FFBP algorithm for miniature UAV SAR imaging without navigational data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7053–7065. doi: 10.1109/TGRS.2017.2739133
    [10] LINNEHAN R, MILLER J, and ASADI A. Map-drift autofocus and scene stabilization for video-SAR[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1401–1405. doi: 10.1109/RADAR.2018.8378769.
    [11] MAO Xinhua, HE Xueli, and LI Danqi. Knowledge-aided 2-D autofocus for spotlight SAR range migration algorithm imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5458–5470. doi: 10.1109/TGRS.2018.2817507
    [12] KRAGH T J and KHARBOUCH A A. Monotonic iterative algorithms for SAR image restoration[C]. 2006 IEEE International Conference on Image Processing (ICIP), Atlanta, USA, 2006: 645–648. doi: 10.1109/ICIP.2006.312463.
    [13] 张柘, 张冰尘, 洪文, 等. 结合MD自聚焦算法与回波模拟算子的快速稀疏微波成像误差补偿算法[J]. 雷达学报, 2016, 5(1): 25–34. doi: 10.12000/JR15055

    ZHANG Zhe, ZHANG Bingchen, HONG Wen, et al. Accelerated sparse microwave imaging phase error compensation algorithm based on combination of SAR raw data simulator and Map-drift autofocus algorithm[J]. Journal of Radars, 2016, 5(1): 25–34. doi: 10.12000/JR15055
    [14] GÜNGÖR A, ÇETIN M, and GÜVEN H E. Autofocused compressive SAR imaging based on the alternating direction method of multipliers[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1573–1576. doi: 10.1109/RADAR.2017.7944458.
    [15] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    [16] GÜVEN H E, GÜNGÖR A, and ÇETIN M. An augmented Lagrangian method for complex-valued compressed SAR imaging[J]. IEEE Transactions on Computational Imaging, 2016, 2(3): 235–250. doi: 10.1109/TCI.2016.2580498
    [17] ÖNHON N Ö and ÆETIN M. A sparsity-driven approach for SAR image formation and space-variant focusing[C]. 2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU), Antalya, Turkey, 2011: 614–617. doi: 10.1109/SIU.2011.5929725.
    [18] 刘碧丹, 王岩飞, 韩松. 距离徙动校正和斜地变换的实时算法研究[J]. 电子与信息学报, 2009, 31(5): 1099–1102. doi: 10.3724/SP.J.1146.2008.00192

    LIU Bidan, WANG Yanfei, and HAN Song. A real-time associative algorithm of RCMC and SRGR[J]. Journal of Electronics &Information Technology, 2009, 31(5): 1099–1102. doi: 10.3724/SP.J.1146.2008.00192
    [19] MALEKI A, ANITORI L, YANG Z, et al. Asymptotic analysis of complex LASSO via Complex Approximate Message Passing (CAMP)[J]. IEEE Transactions on Information Theory, 2013, 59(7): 4290–4308. doi: 10.1109/TIT.2013.2252232
    [20] DONOHO D L, MALEKI A, and MONTANARI A. The noise-sensitivity phase transition in compressed sensing[J]. IEEE Transactions on Information Theory, 2011, 57(10): 6920–6941. doi: 10.1109/TIT.2011.2165823
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1333
  • HTML全文浏览量:  539
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-24
  • 修回日期:  2021-02-28
  • 网络出版日期:  2021-03-22
  • 刊出日期:  2021-09-16

目录

    /

    返回文章
    返回