高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平行互质虚拟阵列的低复杂度二维DOA联合估计算法

李林 余玉龙 韩慧

李林, 余玉龙, 韩慧. 基于平行互质虚拟阵列的低复杂度二维DOA联合估计算法[J]. 电子与信息学报, 2021, 43(6): 1653-1658. doi: 10.11999/JEIT200296
引用本文: 李林, 余玉龙, 韩慧. 基于平行互质虚拟阵列的低复杂度二维DOA联合估计算法[J]. 电子与信息学报, 2021, 43(6): 1653-1658. doi: 10.11999/JEIT200296
Lin LI, Yulong YU, Hui HAN. A Low Complexity Two-demensional DOA Joint Estimation Algorithm Based on Parallel Coprime Virtual Array[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1653-1658. doi: 10.11999/JEIT200296
Citation: Lin LI, Yulong YU, Hui HAN. A Low Complexity Two-demensional DOA Joint Estimation Algorithm Based on Parallel Coprime Virtual Array[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1653-1658. doi: 10.11999/JEIT200296

基于平行互质虚拟阵列的低复杂度二维DOA联合估计算法

doi: 10.11999/JEIT200296
基金项目: 电子信息系统复杂电磁环境效应国家重点实验室开放课题(2020G0101)
详细信息
    作者简介:

    李林:男,1980年生,副教授,研究方向为电子侦察、信号检测与估值

    余玉龙:男,1995年生,硕士生,研究方向为阵列信号处理、DOA估计

    韩慧:女,1980年生,副研究员,研究方向为通信信号处理、电磁目标检测与识别

    通讯作者:

    李林 lilin@xidian.edu.cn

  • 中图分类号: TN911.7

A Low Complexity Two-demensional DOA Joint Estimation Algorithm Based on Parallel Coprime Virtual Array

Funds: The Open Project of State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System (2020G0101)
  • 摘要: 针对传统平行阵列2维测向自由度低、分辨能力差和小快拍情况下估计误差大等问题,该文提出基于平行互质虚拟阵列的低复杂度2维波达角(DOA)估计算法。该算法利用两个相互平行的互质线阵扩展生成虚拟阵列,并通过协方差矩阵和互协方差矩阵构造具有增强2维角度自由度的扩展矩阵,最后通过奇异值分解(SVD)和旋转不变技术(ESPRIT)获得自动匹配的2维角度估计。相比于传统的2维DOA估计方法,所提算法更好地利用了阵列接收数据信息,能识别更多的入射信号,分辨能力高,不需要进行2维线性搜索或者角度参数匹配,在低信噪比 (SNR)和小快拍情况下也有很好的估计效果。实验仿真结果验证了提出算法的有效性和可靠性。
  • 图  1  平行互质阵列几何模型

    图  2  K=11时算法估计结果(SNR=10 dB, P=500)

    图  3  高分辨率实验(K=2, SNR=20 dB, P=500)

    图  4  不同快拍数算法性能对比(K=4, SNR=10 dB)

    图  5  不同信噪比下的性能分析(K=4, P=1000)

    表  1  不同2维DOA估计算法运行时间(s)

    估计算法本文算法文献[12]文献[4]
    运行时间2.28326.4131.268
    下载: 导出CSV
  • [1] ZHANG Wei, LIU Wei, WANG Ju, et al. Computationally efficient 2-D DOA estimation for uniform rectangular arrays[J]. Multidimensional Systems and Signal Processing, 2014, 25(4): 847–857. doi: 10.1007/s11045-013-0267-y
    [2] GU Jianfeng and WEI Ping. Joint SVD of two cross-correlation matrices to achieve automatic pairing in 2-D angle estimation problems[J]. IEEE Antennas and Wireless Propagation Letters, 2007, 6: 553–556. doi: 10.1109/LAWP.2007.907913
    [3] GU Jianfeng, ZHU Weiping, and SWAMY M N S. Joint 2-D DOA estimation via sparse L-shaped array[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1171–1182. doi: 10.1109/tsp.2015.2389762
    [4] LI Jianfeng, ZHANG Xiaofei, and CHEN Han. Improved two-dimensional DOA estimation algorithm for two-parallel uniform linear arrays using propagator method[J]. Signal Processing, 2012, 92(12): 3032–3038. doi: 10.1016/j.sigpro.2012.06.010
    [5] MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172–175. doi: 10.1109/TAP.1968.1139138
    [6] 杨杰, 廖桂生. 基于空域稀疏性的嵌套MIMO雷达DOA估计算法[J]. 电子与信息学报, 2014, 36(11): 2698–2704. doi: 10.3724/SP.J.1146.2013.01900

    YANG Jie and LIAO Guisheng. A spatial sparsity-based DOA estimation method in nested MIMO radar[J]. Journal of Electronics &Information Technology, 2014, 36(11): 2698–2704. doi: 10.3724/SP.J.1146.2013.01900
    [7] VAIDYANATHAN P P and PAL P. Sparse sensing with Co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682
    [8] PAL P and VAIDYANATHAN P P. Nested arrays in two dimensions, part I: Geometrical considerations[J]. IEEE Transactions on Signal Processing, 2012, 60(9): 4694–4705. doi: 10.1109/TSP.2012.2203814
    [9] PAL P and VAIDYANATHAN P P. Nested arrays in two dimensions, part II: Application in two dimensional array processing[J]. IEEE Transactions on Signal Processing, 2012, 60(9): 4706–4718. doi: 10.1109/tsp.2012.2203815
    [10] FENG Mingyue, HE Minghao, HAN Jun, et al. 2-D DOA estimation using off-grid sparse learning via iterative minimization with L-parallel coprime array[J]. Chinese Journal of Electronics, 2018, 27(6): 1322–1328. doi: 10.1049/cje.2017.11.002
    [11] ELBIR A M. L-shaped coprime array structures for DOA estimation[J]. Multidimensional Systems and Signal Processing, 2020, 31: 205–219. doi: 10.1007/s11045-019-00657-4
    [12] QIN Si, ZHANG Y D, and AMIN M G. Two-dimensional DOA estimation using parallel coprime subarrays[C]. 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janerio, Brazil, 2016: 1–4. doi: 10.1109/SAM.2016.7569635.
    [13] QIN Si, ZHANG Y D, and AMIN M G. Improved two-dimensional DOA estimation using parallel coprime arrays[J]. Signal Processing, 2020, 172: 107428. doi: 10.1016/j.sigpro.2019.107428
    [14] LI Jianfeng, LI Yunxiang, and ZHANG Xiaofei. Two-Dimensional off-grid DOA estimation using unfolded parallel coprime array[J]. IEEE Communications Letters, 2018, 22(12): 2495–2498. doi: 10.1109/LCOMM.2018.2872955
    [15] 谭伟杰, 冯西安. 基于稀疏表示的平行互素阵二维测向方法[J]. 系统工程与电子技术, 2019, 41(5): 937–943. doi: 10.3969/j.issn.1001-506X.2019.05.01

    TAN Weijie and FENG Xi’an. Sparsity-based two dimensional direction-finding method for parallel co-prime arrays[J]. Systems Engineering and Electronics, 2019, 41(5): 937–943. doi: 10.3969/j.issn.1001-506X.2019.05.01
    [16] 杨旭东, 刘鲁涛, 李利. L型结构的互质阵列二维波达方向估计[J]. 西安交通大学学报, 2020, 54(2): 144–149, 188. doi: 10.7652/xjtuxb202002018

    YANG Xudong, LIU Lutao, and LI Li. A method for estimating 2D direction of arrival based on coprime array with L-shaped structure[J]. Journal of Xian Jiaotong University, 2020, 54(2): 144–149, 188. doi: 10.7652/xjtuxb202002018
    [17] QIN Si, ZHANG Yimin, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1755
  • HTML全文浏览量:  723
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 修回日期:  2020-08-11
  • 网络出版日期:  2020-08-15
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回