高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分层贝叶斯Lasso的稀疏ISAR成像算法

杨磊 夏亚波 毛欣瑶 廖仙华 方澄 高洁

杨磊, 夏亚波, 毛欣瑶, 廖仙华, 方澄, 高洁. 基于分层贝叶斯Lasso的稀疏ISAR成像算法[J]. 电子与信息学报, 2021, 43(3): 623-631. doi: 10.11999/JEIT200292
引用本文: 杨磊, 夏亚波, 毛欣瑶, 廖仙华, 方澄, 高洁. 基于分层贝叶斯Lasso的稀疏ISAR成像算法[J]. 电子与信息学报, 2021, 43(3): 623-631. doi: 10.11999/JEIT200292
Lei YANG, Yabo XIA, Xinyao MAO, Xianhua LIAO, Cheng FANG, Jie GAO. Sparse ISAR Imaging Algorithm Based on Bayesian-Lasso[J]. Journal of Electronics & Information Technology, 2021, 43(3): 623-631. doi: 10.11999/JEIT200292
Citation: Lei YANG, Yabo XIA, Xinyao MAO, Xianhua LIAO, Cheng FANG, Jie GAO. Sparse ISAR Imaging Algorithm Based on Bayesian-Lasso[J]. Journal of Electronics & Information Technology, 2021, 43(3): 623-631. doi: 10.11999/JEIT200292

基于分层贝叶斯Lasso的稀疏ISAR成像算法

doi: 10.11999/JEIT200292
基金项目: 中央高校基本科研业务费专项资金(3122018C005, 3122014C009),国家自然科学基金(61601470),天津市自然科学基金(16JCYBJC41200)
详细信息
    作者简介:

    杨磊:男,1984年生,副教授,研究方向为高分辨SAR成像及机器学习理论应用

    夏亚波:男,1991年生,硕士生,研究方向为高分辨SAR成像及统计采样技术应用

    毛欣瑶:女,1993年生,硕士生,研究方向为高分辨SAR成像及微多普勒特征增强

    廖仙华:男,1993年生,硕士生,研究方向为高分辨SAR成像及统计采样技术应用

    方澄:男,1980年生,讲师,研究方向为深度学习及目标异常检测

    高洁:女,1984年生,讲师,研究方向为多源数据融合

    通讯作者:

    杨磊 yanglei840626@163.com

  • 中图分类号: TN957.52

Sparse ISAR Imaging Algorithm Based on Bayesian-Lasso

Funds: The Fundamental Research Funds for Central Universities of Ministry of Education of China (3122018C005, 3122014C009), The National Natural Science Foundation of China (61601470), The Natural Science Foundation of Tianjin (16JCYBJC41200)
  • 摘要: 逆合成孔径雷达(ISAR)目标回波具有明显的稀疏特征,传统的凸优化稀疏ISAR成像算法涉及繁琐的正则项系数调整,严重限制了超分辨成像的精度及便捷程度。针对此问题,该文面向非约束Lasso正则化模型,建立分层贝叶斯概率模型,将非约束的$ {\ell _1}$范数正则化问题等效转化成稀疏拉普拉斯先验建模问题,并在分层贝叶斯Lasso模型中建立正则项系数依赖的概率分布,从而为实现完全自动化参数调整提供便利条件。考虑到目标稀疏散射特征和多超参数的高维统计特性,该文应用吉布斯(Gibbs)随机采样方法,实现对ISAR目标稀疏特征的求解,并同步获取包括正则项系数在内的多参数估计。基于该文研究方法可实现全部参数均通过数据学习获得,从而有效避免繁琐的参数调整过程,提升算法的自动化程度。仿真及实测数据均可证明该方法的有效性和优越性。
  • 图  1  ISAR成像示意图

    图  2  贝叶斯层级模型(有向无环图,DAG)

    图  3  信噪比5 dB不同降采样率成像结果

    图  4  降采样率0.5不同信噪比成像结果

    图  5  信噪比5 dB不同降采样率成像结果

    图  6  降采样0.5不同信噪比成像结果

    图  7  地面动目标成像

    图  8  相变图

    表  1  贝叶斯Lasso算法流程

     (1) 初始化${{{X}}^{\left( 0 \right)}}$, ${\beta ^{\left( 0 \right)}}$, ${{{\alpha}} ^{\left( 0 \right)}}$和${\lambda ^{\left( 0 \right)}}$并构造字典${{A}}$;
     (2) 设置老化期门限$T$和迭代次数$k$=$1,2, ··· ,K$,其中$K$为迭代总次数且$T < K$,开始循环采样;
     (3) 根据式(15)噪声精度$\beta $的条件后验概率密度分布$p\left( {\beta \left| {{{X}},{{Y}},{{\alpha}} ,\lambda } \right.} \right)$对$\beta $进行采样;
     (4) 根据式(16)正则化系数$\lambda $所服从的条件后验概率密度分布$p\left( {\lambda \left| {{{X}},{{Y}},{{\alpha}} ,\beta } \right.} \right)$对$\lambda $进行采样;
     (5) 根据式(17)超参数${{\alpha}} $所服从的条件后验概率密度分布$p\left( {{{\alpha}} \left| {{{X}},{{Y}},\lambda ,\beta } \right.} \right)$对${{\alpha}} $进行采样;
     (6) 根据式(19)目标${{X}}$所服从的条件后验概率密度分布$p\left( {{{X}}\left| {{{Y}},{{\alpha}} ,\lambda ,\beta } \right.} \right)$对${{X}}$进行采样;
     (7) 若$k > T$,收集${{X}}$的采样样本$\left[ {{{{X}}^{\left( T \right)}},{{{X}}^{\left( {T + 1} \right)}}, ··· ,{{{X}}^{\left( K \right)}}} \right]$,重复步骤(3)—步骤(6)直至收敛。
    下载: 导出CSV
  • 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005.
    杨利超, 邢孟道, 孙广才, 等. 一种微波光子雷达ISAR成像新方法[J]. 电子与信息学报, 2019, 41(6): 1271–1279. doi: 10.11999/JEIT180661

    YANG Lichao, XING Mengdao, SUN Guangcai, et al. A novel ISAR imaging algorithm for microwave photonics radar[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1271–1279. doi: 10.11999/JEIT180661
    王天云, 陆新飞, 孙麟, 等. 基于贝叶斯压缩感知的ISAR自聚焦成像[J]. 电子与信息学报, 2015, 37(11): 2719–2726. doi: 10.11999/JEIT150235

    WANG Tianyun, LU Xinfei, SUN Lin, et al. An autofocus imaging method for ISAR based on Bayesian compressive sensing[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2719–2726. doi: 10.11999/JEIT150235
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    王钢, 周若飞, 邹昳琨. 基于压缩感知理论的图像优化技术[J]. 电子与信息学报, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669

    WANG Gang, ZHOU Ruofei, and ZOU Yikun. Research on image optimization technology based on compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669
    TELLO M, LOPEZ-DEKKER P, and MALLORQUI J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285–4295. doi: 10.1109/TGRS.2010.2051231
    YANG Lei, ZHAO Lifan, ZHOU Song, et al. Sparsity-driven SAR imaging for highly maneuvering ground target by the combination of time-frequency analysis and parametric bayesian learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4): 1443–1454. doi: 10.1109/jstars.2016.2611005
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    吕杰勤. 基于压缩感知的ISAR成像算法研究[D]. [硕士论文], 哈尔滨工业大学, 2014.

    LÜ Jieqin. Study on algorithm of inverse synthetic radar imaging based on compressive sensing[D]. [Master dissertation], Harbin Institute of Technology, 2014.
    WONG W K and ZHOU Julie. CVX-based algorithms for constructing various optimal regression designs[J]. Canadian Journal of Statistics, 2019, 47(3): 374–391. doi: 10.1002/cjs.11499
    WANG Xiangrong, ELIAS A, and AMIN M G. Thinned array beampattern synthesis by iterative soft-thresholding-based optimization algorithms[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6102–6113. doi: 10.1109/TAP.2014.2364048
    杨磊, 李埔丞, 李慧娟, 等. 稳健高效通用SAR图像稀疏特征增强算法[J]. 电子与信息学报, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173

    YANG Lei, LI Pucheng, LI Huijuan, et al. Robust and efficient sparse-feature Enhancementfor generalized SAR imagery[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173
    李瑞, 张群, 苏令华, 等. 基于稀疏贝叶斯学习的双基雷达关联成像[J]. 电子与信息学报, 2019, 41(12): 2865–2872. doi: 10.11999/JEIT180933

    LI Rui, ZHANG Qun, SU Linghua, et al. Bistatic radar coincidence imaging based on sparse bayesian learning[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2865–2872. doi: 10.11999/JEIT180933
    ZHAO Lifan, WANG Lu, BI Guoan, et al. An autofocus technique for high-resolution inverse synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6392–6403. doi: 10.1109/TGRS.2013.2296497
    YANG Lei, ZHAO Lifan, BI Guoan, et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2254–2267. doi: 10.1109/TGRS.2015.2498158
    WANG Lu, ZHAO Lifan, BI Guoan, et al. Enhanced ISAR imaging by exploiting the continuity of the target scene[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5736–5750. doi: 10.1109/TGRS.2013.2292074
    陈倩倩, 邢孟道, 李浩林, 等. 一种适用于低信噪比短CPI的ISAR横向定标算法[J]. 西安电子科技大学学报, 2014, 41(6): 12–17, 64. doi: 10.3969/j.issn.1001-2400.2014.0603

    CHEN Qianqian, XING Mengdao, LI Haolin, et al. Cross-range scaling for ISAR imaging within short CPI and low SNR[J]. Journal of Xidian University, 2014, 41(6): 12–17, 64. doi: 10.3969/j.issn.1001-2400.2014.0603
    侯丽丽, 郑明洁, 宋红军, 等. 多通道高分辨率宽测绘带SAR系统杂波抑制技术研究[J]. 电子与信息学报, 2016, 38(3): 635–642. doi: 10.11999/JEIT150659

    HOU Lili, ZHENG Mingjie, SONG Hongjun, et al. Research on clutter suppression for multichannel High-resolution wide-swath SAR system[J]. Journal of Electronics &Information Technology, 2016, 38(3): 635–642. doi: 10.11999/JEIT150659
    XU Gang, GAO Yandong, LI Jinwei, et al. InSAR phase denoising: A review of current technologies and future directions[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(2): 64–82. doi: 10.1109/MGRS.2019.2955120
    张群英, 江兆凤, 李超, 等. 太赫兹合成孔径雷达成像运动补偿算法[J]. 电子与信息学报, 2017, 39(1): 129–137. doi: 10.11999/JEIT160201

    ZHANG Qunying, JIANG Zhaofeng, LI Chao, et al. Motion compensation imaging algorithm of TeraHertz synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2017, 39(1): 129–137. doi: 10.11999/JEIT160201
    YANG Lei, LI Pucheng, ZHANG Su, et al. Cooperative multitask learning for sparsity-driven SAR imagery and nonsystematic error autocalibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 5132–5147. doi: 10.1109/TGRS.2020.2972972
    YANG Lei, BI Guoan, XING Mengdao, et al. Airborne SAR moving target signatures and imagery based on LVD[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11): 5958–5971. doi: 10.1109/TGRS.2015.2429678
    DONOHO D L and TANNER J. Precise undersampling theorems[J]. Proceedings of the IEEE, 2010, 98(6): 913–924. doi: 10.1109/JPROC.2010.2045630
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2494
  • HTML全文浏览量:  620
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 修回日期:  2020-08-08
  • 网络出版日期:  2020-08-13
  • 刊出日期:  2021-03-22

目录

    /

    返回文章
    返回