高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

最大互相关熵多凸组合自适应滤波算法

卢明飞 彭思愿 陈霸东

卢明飞, 彭思愿, 陈霸东. 最大互相关熵多凸组合自适应滤波算法[J]. 电子与信息学报, 2021, 43(2): 263-269. doi: 10.11999/JEIT200288
引用本文: 卢明飞, 彭思愿, 陈霸东. 最大互相关熵多凸组合自适应滤波算法[J]. 电子与信息学报, 2021, 43(2): 263-269. doi: 10.11999/JEIT200288
Mingfei LU, Siyuan PENG, Badong CHEN. Convex Combination of Multiple Adaptive Filters under the Maximum Correntropy Criterion[J]. Journal of Electronics & Information Technology, 2021, 43(2): 263-269. doi: 10.11999/JEIT200288
Citation: Mingfei LU, Siyuan PENG, Badong CHEN. Convex Combination of Multiple Adaptive Filters under the Maximum Correntropy Criterion[J]. Journal of Electronics & Information Technology, 2021, 43(2): 263-269. doi: 10.11999/JEIT200288

最大互相关熵多凸组合自适应滤波算法

doi: 10.11999/JEIT200288
基金项目: 国家自然科学基金-深圳市联合研究项目(U1613219),国家自然科学基金(91648208, 61976175)
详细信息
    作者简介:

    卢明飞:男,1987年生,博士生,研究方向为自适应信号处理、模式识别与机器学习等

    彭思愿:男,1991年生,博士生,研究方向为非负矩阵分解、信息论学习和自适应滤波算法等

    陈霸东:男,1974年生,教授,研究方向为先进信号处理与脑机接口、机器学习与认知计算以及新型神经网络计算模型

    通讯作者:

    陈霸东 chenbd@mail.xjtu.edu.cn

  • 中图分类号: TN713

Convex Combination of Multiple Adaptive Filters under the Maximum Correntropy Criterion

Funds: The National Natural Science Foundation-Shenzhen Joint Research Program (U1613219), The National Natural Science Foundation of China (91648208, 61976175)
  • 摘要: 基于最大互相关熵准则(MCC)的自适应滤波算法在非高斯噪声环境下具有强鲁棒性,得到了广泛应用。然而,传统MCC滤波算法在选择参数时依然受到收敛速度与稳态精度之间固有矛盾的困扰。为解决这一问题,该文提出一类多凸组合MCC算法,能够充分发挥不同参数组合下滤波算法的性能优势,从而获得更好的信道跟踪能力。理论分析得出了所提算法的均值收敛条件和稳态均方误差,同时,仿真实验表明所提算法在对抗高斯和非高斯噪声时均具有收敛快、稳态精度高的特点。
  • 图  1  算法收敛性能对比

    图  2  算法凸组合参数收敛过程

    图  3  改进前后算法收敛过程对比

    图  4  改进前后算法组合参数收敛过程对比

    图  5  各种组合算法收敛性能对比1

    图  6  各种组合算法收敛性能对比2

    表  1  算法参数设置

    名称${\mu _1}$/${\sigma _1}$${\mu _2}$/${\sigma _2}$${\mu _3}$/${\sigma _3}$${\mu _4}$/${\sigma _4}$${\mu _\xi }$/${\sigma _\xi }$
    数值0.03/6.00.04/4.00.08/2.00.3/1.54.5/1.0
    下载: 导出CSV

    表  2  算法参数设置

    名称${\mu _1}$${\mu _2}$${\sigma _1}$${\sigma _2}$
    数值0.010.41.08.0
    下载: 导出CSV
  • PRINCIPE J C. Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives[M]. New York: Springer, 2010: 385–388, 415–424.
    CHEN Badong, ZHU Yu, HU Jinchun, et al. System Parameter Identification: Information Criteria and Algorithms[M]. London: Elsevier, 2013: 32–40.
    HE Ran, ZHENG Weishi, and HU Baogang. Maximum correntropy criterion for robust face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1561–1576. doi: 10.1109/TPAMI.2010.220
    SINGH A and PRÍNCIPE J C. A loss function for classification based on a robust similarity metric[C]. 2010 International Joint Conference on Neural Networks, Barcelona, Spain, 2010: 1–6.
    ZHAO Songlin, CHEN Badong, and PRÍNCIPE J C. An adaptive kernel width update for correntropy[C]. 2012 International Joint Conference on Neural Networks, Brisbane, Australia, 2012: 1–5.
    CHEN Badong and PRINCIPE J C. Maximum correntropy estimation is a smoothed MAP estimation[J]. IEEE Signal Processing Letters, 2012, 19(8): 491–494. doi: 10.1109/LSP.2012.2204435
    CHEN Badong, XING Lei, LIANG Junli, et al. Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion[J]. IEEE Signal Processing Letters, 2014, 21(7): 880–884. doi: 10.1109/LSP.2014.2319308
    SAYED A H. Adaptive Filters[M]. Hoboken: John Wiley & Sons, Inc., 2008: 163–200.
    WIDROW B and STEARNS S D. Adaptive Signal Processing[M]. Englewood Cliffs: Prentice-Hall, 1985.
    邱天爽. 相关熵与循环相关熵信号处理研究进展[J]. 电子与信息学报, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646

    QIU Tianshuang. Development in signal processing based on correntropy and cyclic correntropy[J]. Journal of Electronics &Information Technology, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646
    ZHIDKOV S V. Impulsive noise suppression in OFDM-based communication systems[J]. IEEE Transactions on Consumer Electronics, 2003, 49(4): 944–948. doi: 10.1109/TCE.2003.1261179
    WANG Ren, CHEN Badong, ZHENG Nanning, et al. A variable step-size adaptive algorithm under maximum correntropy criterion[C]. 2015 International Joint Conference on Neural Networks, Killarney, Ireland, 2015: 1–5.
    ZHAO Haiquan, LIU Bing, and SONG Pucha. Variable step-size affine projection maximum correntropy criterion adaptive filter with correntropy induced metric for sparse system identification[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(11): 2782–2786. doi: 10.1109/TCSII.2020.2973764
    WANG Weihua, ZHAO Jihong, QU Hua, et al. An adaptive kernel width update method of correntropy for channel estimation[C]. 2015 IEEE International Conference on Digital Signal Processing, Singapore, 2015: 916–920.
    HUANG Fuyi, ZHANG Jiashu, and ZHANG Sheng. Adaptive filtering under a variable kernel width maximum correntropy criterion[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(10): 1247–1251. doi: 10.1109/TCSII.2017.2671339
    李群生, 赵剡, 寇磊, 等. 一种基于多尺度核学习的仿射投影滤波算法[J]. 电子与信息学报, 2020, 42(4): 924–931. doi: 10.11999/JEIT190023

    LI Qunsheng, ZHAO Yan, KOU Lei, et al. An affine projection algorithm with multi-scale kernels learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 924–931. doi: 10.11999/JEIT190023
    CHEN Badong, WANG Xin, LU Na, et al. Mixture correntropy for robust learning[J]. Pattern Recognition, 2018, 79: 318–327. doi: 10.1016/j.patcog.2018.02.010
    ARENAS-GARCÍA J, GÓMEZ-VERDEJO V, and FIGUEIRAS-VIDAL A R. New algorithms for improved adaptive convex combination of LMS transversal filters[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(6): 2239–2249. doi: 10.1109/TIM.2005.858823
    SILVA M T M and NASCIMENTO V H. Improving the tracking capability of adaptive filters via convex combination[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 3137–3149. doi: 10.1109/TSP.2008.919105
    ARENAS-GARCIA J, FIGUEIRAS-VIDAL A R, and SAYED A H. Mean-square performance of a convex combination of two adaptive filters[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 1078–1090. doi: 10.1109/TSP.2005.863126
    SHI Liming and LIN Yun. Convex combination of adaptive filters under the maximum correntropy criterion in impulsive interference[J]. IEEE Signal Processing Letters, 2014, 21(11): 1385–1388. doi: 10.1109/LSP.2014.2337899
    ARENAS-GARCIA J, MARTINEZ-RAMON M, GOMEZ-VERDEJO V, et al. Multiple plant identifier via adaptive LMS convex combination[C]. 2003 IEEE International Symposium on Intelligent Signal Processing, Budapest, Hungary, 2003: 137–142.
    MA Wentao, QU Hua, GUI Guan, et al. Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments[J]. Journal of the Franklin Institute, 2015, 352(7): 2708–2727. doi: 10.1016/j.jfranklin.2015.03.039
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1398
  • HTML全文浏览量:  1125
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 修回日期:  2020-10-21
  • 网络出版日期:  2020-11-18
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回