高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于异步优势演员-评论家学习的服务功能链资源分配算法

唐伦 贺小雨 王晓 谭颀 胡彦娟 陈前斌

唐伦, 贺小雨, 王晓, 谭颀, 胡彦娟, 陈前斌. 基于异步优势演员-评论家学习的服务功能链资源分配算法[J]. 电子与信息学报, 2021, 43(6): 1733-1741. doi: 10.11999/JEIT200287
引用本文: 唐伦, 贺小雨, 王晓, 谭颀, 胡彦娟, 陈前斌. 基于异步优势演员-评论家学习的服务功能链资源分配算法[J]. 电子与信息学报, 2021, 43(6): 1733-1741. doi: 10.11999/JEIT200287
Lun TANG, Xiaoyu HE, Xiao WANG, Qi TAN, Yanjuan HU, Qianbin CHEN. Resource allocation Algorithm of Service Function Chain Based on Asynchronous Advantage Actor-Critic Learning[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1733-1741. doi: 10.11999/JEIT200287
Citation: Lun TANG, Xiaoyu HE, Xiao WANG, Qi TAN, Yanjuan HU, Qianbin CHEN. Resource allocation Algorithm of Service Function Chain Based on Asynchronous Advantage Actor-Critic Learning[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1733-1741. doi: 10.11999/JEIT200287

基于异步优势演员-评论家学习的服务功能链资源分配算法

doi: 10.11999/JEIT200287
基金项目: 重庆市教委科学技术研究项目(KJZD-M20180601),重庆市重大主题专项(cstc2019jscx-zdztzxX0006)
详细信息
    作者简介:

    唐伦:男,1973年生,教授,博士生导师,主要研究方向为新一代无线通信网络、异构蜂窝网络等

    贺小雨:女,1995年生,硕士生,研究方向为网络切片资源分配和强化学习

    王晓:男,1995年生,硕士生,研究方向为网络切片资源优化和机器学习

    谭颀:女,1995年生,硕士生,研究方向为5G网络切片、资源分配、随机优化理论

    胡彦娟:女,1992年生,硕士生,研究方向为移动边缘计算中的资源分配和任务卸载

    陈前斌:男,1967年生,教授,博士生导师,主要研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络、异构蜂窝网络等

    通讯作者:

    贺小雨 Hexy1995@163.com

  • 中图分类号: TN929.5

Resource allocation Algorithm of Service Function Chain Based on Asynchronous Advantage Actor-Critic Learning

Funds: The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M20180601), The Major Theme Special Projects of Chongqing (cstc2019jscx-zdztzxX0006)
  • 摘要: 考虑网络全局信息难以获悉的实际情况,针对接入网切片场景下用户终端(UE)的移动性和数据包到达的动态性导致的资源分配优化问题,该文提出了一种基于异步优势演员-评论家(A3C)学习的服务功能链(SFC)资源分配算法。首先,该算法建立基于区块链的资源管理机制,通过区块链技术实现可信地共享并更新网络全局信息,监督并记录SFC资源分配过程。然后,建立UE移动和数据包到达时变情况下的无线资源、计算资源和带宽资源联合分配的时延最小化模型,并进一步将其转化为马尔科夫决策过程(MDP)。最后,在所建立的MDP中采用A3C学习方法,实现资源分配策略的求解。仿真结果表明,该算法能够更加合理高效地利用资源,优化系统时延并保证UE需求。
  • 图  1  接入网切片SFC资源分配框架

    图  2  SFC数目与区块链共识时延关系图

    图  3  区块链节点CPU使用率

    图  4  不同熵超参数$\delta $的A3C算法收敛性

    图  5  不同学习算法的资源使用方差百分比

  • [1] OTOKURA M, LEIBNITZ K, KOIZUMI Y, et al. Evolvable virtual network function placement method: Mechanism and performance evaluation[J]. IEEE Transactions on Network and Service Management, 2019, 16(1): 27–40. doi: 10.1109/TNSM.2018.2890273
    [2] CABALLERO P, BANCHS A, DE VECIANA G, et al. Network slicing games: Enabling customization in multi-tenant mobile networks[J]. IEEE/ACM Transactions on Networking, 2019, 27(2): 662–675. doi: 10.1109/TNET.2019.2895378
    [3] ALQERM I and SHIHADA B. Sophisticated online learning scheme for green resource allocation in 5G heterogeneous cloud radio access networks[J]. IEEE Transactions on Mobile Computing, 2018, 17(10): 2423–2437. doi: 10.1109/TMC.2018.2797166
    [4] DEMIR M S, SAIT S M, and UYSAL M. Unified resource allocation and mobility management technique using particle swarm optimization for VLC networks[J]. IEEE Photonics Journal, 2018, 10(6): 7908809. doi: 10.1109/JPHOT.2018.2864139
    [5] DASTGHEIB M A, BEYRANVAND H, SALEHI J A, et al. Mobility-aware resource allocation in VLC networks using T-step look-ahead policy[J]. Journal of Lightwave Technology, 2018, 36(23): 5358–5370. doi: 10.1109/JLT.2018.2872869
    [6] 唐伦, 周钰, 谭颀, 等. 基于强化学习的5G网络切片虚拟网络功能迁移算法[J]. 电子与信息学报, 2020, 42(3): 669–677. doi: 10.11999/JEIT190290

    TANG Lun, ZHOU Yu, TAN Qi, et al. Virtual network function migration algorithm based on reinforcement learning for 5G network slicing[J]. Journal of Electronics &Information Technology, 2020, 42(3): 669–677. doi: 10.11999/JEIT190290
    [7] SHARMA P K, CHEN M Y, and PARK J H. A software defined fog node based distributed blockchain cloud architecture for IoT[J]. IEEE Access, 2017, 6: 115–124. doi: 10.1109/ACCESS.2017.2757955
    [8] XIE Lixia, DING Ying, YANG Hongyu, et al. Blockchain-based secure and trustworthy Internet of Things in SDN-enabled 5G-VANETs[J]. IEEE Access, 2019, 7: 56656–56666. doi: 10.1109/ACCESS.2019.2913682
    [9] SUN Yao, FENG Gang, QIN Shuang, et al. The SMART handoff policy for millimeter wave heterogeneous cellular networks[J]. IEEE Transactions on Mobile Computing, 2018, 17(6): 1456–1468. doi: 10.1109/TMC.2017.2762668
    [10] LI Junling, SHI Weisen, ZHANG Ning, et al. Reinforcement learning based VNF scheduling with end-to-end delay guarantee[C]. 2019 IEEE/CIC International Conference on Communications in China (ICCC), Changchun, China, 2019: 572–577. doi: 10.1109/ICCChina.2019.8855889.
    [11] LI Guanglei, ZHOU Huachun, FENG Bohao, et al. Efficient provision of service function chains in overlay networks using reinforcement learning[J]. IEEE Transactions on Cloud Computing, To be pulished. doi: 10.1109/TCC.2019.2961093
    [12] GRONDMAN I, BUSONIU L, LOPES G A D, et al. A survey of actor-critic reinforcement learning: Standard and natural policy gradients[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) , 2012, 42(6): 1291–1307. doi: 10.1109/TSMCC.2012.2218595
    [13] 朱立, 俞欢, 詹士潇, 等. 高性能联盟区块链技术研究[J]. 软件学报, 2019, 30(6): 1577–1593. doi: 10.13328/j.cnki.jos.005737

    ZHU Li, YU Huan, ZHAN Shixiao, et al. Research on high-performance consortium blockchain technology[J]. Journal of Software, 2019, 30(6): 1577–1593. doi: 10.13328/j.cnki.jos.005737
    [14] KIAYIAS A, RUSSELL A, DAVID B, et al. Ouroboros: A provably secure proof-of-stake blockchain protocol[C]. The 37th Annual International Cryptology Conference, Santa Barbara, USA, 2017: 357–388. doi: 10.1007/978-3-319-63688-7_12.
    [15] YAO Yingying, CHANG Xiaolin, MIŠIĆ J, et al. BLA: Blockchain-assisted lightweight anonymous authentication for distributed vehicular fog services[J]. IEEE Internet of Things Journal, 2019, 6(2): 3775–3784. doi: 10.1109/JIOT.2019.2892009
    [16] CHEN Zhonglin, CHEN Shanzhi, XU Hui, et al. A security authentication scheme of 5G ultra-dense network based on block chain[J]. IEEE Access, 2018, 6: 55372–55379. doi: 10.1109/ACCESS.2018.2871642
    [17] HE Li and HOU Zhixin. An improvement of consensus fault tolerant algorithm applied to alliance chain[C]. The IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 2019: 1–4. doi: 10.1109/ICEIEC.2019.8784495.
    [18] GUO Shaoyong, DAI Yao, XU Siya, et al. Trusted cloud-edge network resource management: DRL-driven service function chain orchestration for IoT[J]. IEEE Internet of Things Journal, 2020, 7(7): 6010–6022. doi: 10.1109/JIOT.2019.2951593
    [19] WEI Qinglai, WANG Lingxiao, LIU Yu, et al. Optimal elevator group control via deep asynchronous actor-critic learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(12): 5245–5256. doi: 10.1109/TNNLS.2020.2965208
    [20] 戴鹏. 基于实用拜占庭共识算法(PBFT)的区块链模型的评估与改进[D]. [硕士论文], 北京邮电大学, 2019.

    DAI Peng. Evalution and research of blockchain model based on practical byzantine consensus algorithm (PBFT)[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2019.
  • 加载中
图(5)
计量
  • 文章访问数:  1228
  • HTML全文浏览量:  350
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 修回日期:  2020-09-28
  • 网络出版日期:  2020-09-30
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回