高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双选择信道中的时间偏移广义频分复用通信

王莹 于释雄 任军 林彬

王莹, 于释雄, 任军, 林彬. 双选择信道中的时间偏移广义频分复用通信[J]. 电子与信息学报, 2021, 43(4): 1080-1089. doi: 10.11999/JEIT200269
引用本文: 王莹, 于释雄, 任军, 林彬. 双选择信道中的时间偏移广义频分复用通信[J]. 电子与信息学报, 2021, 43(4): 1080-1089. doi: 10.11999/JEIT200269
Ying WANG, Shixiong YU, Jun REN, Bin LIN. Time-Offset Generalized Frequency Division Multiplexing Communication in Doubly-selective Channels[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1080-1089. doi: 10.11999/JEIT200269
Citation: Ying WANG, Shixiong YU, Jun REN, Bin LIN. Time-Offset Generalized Frequency Division Multiplexing Communication in Doubly-selective Channels[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1080-1089. doi: 10.11999/JEIT200269

双选择信道中的时间偏移广义频分复用通信

doi: 10.11999/JEIT200269
基金项目: 国家重点研发计划(2019YFE0111600),国家自然科学基金(61971083, 51939001),大连市科技创新基金重点学科重大课题(2019J11CY015)
详细信息
    作者简介:

    王莹:男,1968年生,教授,研究方向为移动通信技术与无线自组织网络

    于释雄:男,1995年生,硕士生,研究方向为OFDM和GFDM

    任军:男,1997年生,硕士生,研究方向为OFDM和GFDM

    林彬:女,1977年生,教授,研究方向为无线网络通信技术

    通讯作者:

    林彬 Binlin@dlmu.edu.cn

  • 中图分类号: TN911

Time-Offset Generalized Frequency Division Multiplexing Communication in Doubly-selective Channels

Funds: The National Key Research and Development Program of China (2019YFE0111600), The National Natural Science Foundation of China (61971083, 51939001), The Dalian Science and Technology Innovation Fund (2019J11CY015)
  • 摘要: 当信道存在时间-频率双选择性时,严重的子载波间干扰和子符号间干扰将导致广义频分复用(GFDM)系统性能显著下降。为此,该文提出一种时间偏移GFDM系统(TO-GFDM),通过对传统GFDM系统的原型滤波器进行时间偏移,来提高双选择信道下GFDM系统的性能。该文推导了GFDM信号在双选择信道中的平均信干比公式,并提出基于离散导频的联合迭代信道估计与符号检测算法,该算法利用信道估计器与串行干扰消除符号检测器之间的信息交换,逐步减小干扰信号,提高信道估计与符号检测的精度。理论分析与仿真实验结果表明,在双选择信道条件下,时间偏移GFDM比传统的GFDM具有更高的平均信干比和误码率性能;并且,联合迭代信道估计与符号检测算法能有效降低系统误码率。
  • 图  1  GFDM与TO-GFDM的子符号脉冲成型滤波器波形

    图  2  导频符号布置示意图

    图  3  GFDM-I的子符号平均SIR

    图  5  双选择信道下GFDM信号整体平均SIR

    图  4  GFDM-II的子符号平均SIR

    图  6  GFDM-I信道估计误码率性能

    图  8  GFDM-I与GFDM-II的信道估计均方误差对比

    图  9  GFDM-I与GFDM-II的误码率对比

    图  7  GFDM-II信道估计误码率性能

    表  1  迭代联合信道估计与符号检测算法

     (1) 令迭代次数指示变量$i = 0$;
     (2) 通过式(20)计算得到符号判决统计量${{{r}}^{(i)}}$;
     (3) 利用式(23)估计导频符号的广义信道矢量${\tilde{ h}}_{\rm{P}}^{{\rm{LS}}(i)}$;
     (4) 基于${\tilde{ h}}_{\rm{P}}^{{\rm{LS}}(i)}$,利用式(25)估计广义信道矩阵${{\tilde {\mathbb {H}}}^{(i)}}$;
     (5) $i = i + 1$;
     (6) 利用式(36)消除导频符号对数据符号的干扰,即${{{r}}^{(i)}} = {{{r}}^{(0)}} - {{\tilde {\mathbb {H}}}^{(i - 1)}}{{{d}}_{\rm{p}}}$;
     (7) 利用式(37)确定最佳检测符号的索引值$({k^ * },{m^ * })$,并基于${{{{({r_{{k^ * },{m^ * }}})}^{(i)}}}/{{{(\tilde H_{{k^ * },{m^ * }}^{0,0})}^{(i - 1)}}}}$的值进行硬判决,得到估计值${({\tilde d_{{k^ * },{m^ * }}})^{(i)}}$;
     (8) 对符号判决统计量${{{r}}^{(i)}}$进行更新,${ {{r} }^{(i)} } = { {{r} }^{(i)} } - {[{\tilde {{H} }^{(i - 1)} }]_{ {k^ * } + {m^ * }K} }{({\tilde d_{ {k^ * },{m^ * } } })^{(i)} }$;
     (9) 返回第(7)步,对剩余未处理的数据符号依次完成硬判决;
     (10) 更新判决统计量,${{{r}}^{(i)}} = {{{r}}^{(0)}} - {{\tilde {\mathbb {H'}}}^{(i - 1)}}({\tilde{ d}}_{\rm{d}}^{(i)} + {{{d}}_{\rm{p}}})$;
     (11) 返回第(3)步,直至到达设定的迭代次数或者收敛。
    下载: 导出CSV

    表  2  系统仿真参数设定

    参数参数值
    子载波数目32
    原型滤波器升余弦函数
    滚降因子$\alpha $0.4
    采样频率4.8 MHz
    调制方式QPSK
    信道功率延迟分布[0, –1, –9, –10, –15, –20] dB
    时变信道模型Jakes
    $\sigma _{\rm{p}}^2/\sigma _{\rm{d}}^2$2
    下载: 导出CSV
  • MICHAILOW N, MATTHÉ M, GASPAR I S, et al. Generalized frequency division multiplexing for 5th generation cellular networks[J]. IEEE Transactions on Communications, 2014, 62(9): 3045–3061. doi: 10.1109/TCOMM.2014.2345566
    TAO Yunzheng, LIU Long, LIU Shang, et al. A survey: Several technologies of non-orthogonal transmission for 5G[J]. China Communications, 2015, 12(10): 1–15. doi: 10.1109/CC.2015.7315054
    FETTWEIS G, KRONDORF M, and BITTNER S. GFDM-generalized frequency division multiplexing[C]. The 69th IEEE Vehicular Technology Conference, Barcelona, Spain, 2009: 1–4.
    LI Fei, ZHENG Kan, LONG Hang, et al. Performance analysis of complementary GFDM in IoT communications[C]. 2019 IEEE 89th Vehicular Technology Conference, Kuala Lumpur, Malaysia, 2019: 1–5.
    钱志鸿, 田春生, 郭银景, 等. 智能网联交通系统的关键技术与发展[J]. 电子与信息学报, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787

    QIAN Zhihong, TIAN Chunsheng, GUO Yinjing, et al. The key technology and development of intelligent and connected transportation system[J]. Journal of Electronics &Information Technology, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787
    DE ALMEIDA I B F, MENDES L L, RODRIGUES J J P C, et al. 5G waveforms for IoT applications[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2554–2567. doi: 10.1109/COMST.2019.2910817
    LIM B and KO Y C. SIR analysis of OFDM and GFDM waveforms with timing offset, CFO, and phase noise[J]. IEEE Transactions on Wireless Communications, 2017, 16(10): 6979–6990. doi: 10.1109/TWC.2017.2736998
    MOHAMMADIAN A, TELLAMBURA C, and VALKAMA M. Analysis of self-interference cancellation under phase noise, CFO, and IQ imbalance in GFDM full-duplex transceivers[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 700–713. doi: 10.1109/TVT.2019.2953623
    VILAIPORNSAWAI U and JIA Ming. Scattered-pilot channel estimation for GFDM[C]. 2014 IEEE Wireless Communications and Networking Conference, Istanbul, Turkey, 2014: 1053–1058.
    EHSANFAR S, MATTHE M, ZHANG Dan, et al. Interference-free pilots insertion for MIMO-GFDM channel estimation[C]. 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6.
    NA Zhenyu, PAN Zheng, XIONG Mudi, et al. Soft decision control iterative channel estimation for the internet of things in 5G networks[J]. IEEE Internet of Things Journal, 2019, 6(4): 5990–5998. doi: 10.1109/JIOT.2018.2864213
    CHENG Hao, XIA Yili, HUANG Yongming, et al. Joint channel estimation and Tx/Rx I/Q imbalance compensation for GFDM systems[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1304–1317. doi: 10.1109/TWC.2019.2891649
    LI Fei, ZHENG Kan, ZHAO Long, et al. Design and performance of a novel interference-free GFDM transceiver with dual filter[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4695–4706. doi: 10.1109/TVT.2019.2902561
    JEONG J, PARK Y, WEON S, et al. Eigendecomposition-based GFDM for interference-free data transmission and pilot insertion for channel estimation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6931–6943. doi: 10.1109/TWC.2018.2864995
    EHSANFAR S, MATTHÉ M, CHAFII M, et al. Pilot-and CP-aided channel estimation in MIMO non-orthogonal multi-carriers[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 650–664. doi: 10.1109/TWC.2018.2883940
    GOLDSMITH A. Wireless Communications[M]. New York: Cambridge University Press, 2005: 71–74.
    KOZEK W and MOLISCH A F. Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels[J]. IEEE Journal on Selected Areas in Communications, 1998, 16(8): 1579–1589. doi: 10.1109/49.730463
    NISSEL R, ADEMAJ F, and RUPP M. Doubly-selective channel estimation in FBMC-OQAM and OFDM systems[C]. The 88th IEEE Vehicular Technology Conference, Chicago, USA, 2018: 1–5.
    KAY S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. Englewood Cliffs: PTR Prentice-Hall, 1993: 344–365.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1079
  • HTML全文浏览量:  307
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-14
  • 修回日期:  2021-02-23
  • 网络出版日期:  2021-03-14
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回