高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于上下文模糊C均值聚类的图像分割算法

徐金东 赵甜雨 冯国政 欧世峰

徐金东, 赵甜雨, 冯国政, 欧世峰. 基于上下文模糊C均值聚类的图像分割算法[J]. 电子与信息学报, 2021, 43(7): 2079-2086. doi: 10.11999/JEIT200263
引用本文: 徐金东, 赵甜雨, 冯国政, 欧世峰. 基于上下文模糊C均值聚类的图像分割算法[J]. 电子与信息学报, 2021, 43(7): 2079-2086. doi: 10.11999/JEIT200263
Jindong XU, Tianyu ZHAO, Guozheng FENG, Shifeng OU. Image Segmentation Algorithm Based on Context Fuzzy C-Means Clustering[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2079-2086. doi: 10.11999/JEIT200263
Citation: Jindong XU, Tianyu ZHAO, Guozheng FENG, Shifeng OU. Image Segmentation Algorithm Based on Context Fuzzy C-Means Clustering[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2079-2086. doi: 10.11999/JEIT200263

基于上下文模糊C均值聚类的图像分割算法

doi: 10.11999/JEIT200263
基金项目: 国家自然科学基金(62072391, 62066013),山东省自然科学基金(ZR2019MF060, ZR2017MF008),山东省高等教育科学技术重点计划(J18KZ016),烟台市科技计划(2018YT06000271)
详细信息
    作者简介:

    徐金东:男,1980年生,副教授,硕士生导师,研究方向为图像处理、模式识别、盲源分离

    赵甜雨:女,1996年生,硕士生,研究方向为图像聚类、计算机视觉、模式识别和人工智能

    冯国政:男,1996年生,博士生,研究方向为图像分类、模式识别和机器学习

    欧世峰:男,1979年生,教授,硕士生导师,研究方向为信号处理、盲信号分析

    通讯作者:

    徐金东 jindong.xu@nlpr.ia.ac.cn

  • 中图分类号: TN911.73

Image Segmentation Algorithm Based on Context Fuzzy C-Means Clustering

Funds: The National Natural Science Foundation of China (62072391, 62066013), The Natural Science Foundation of Shandong Province (ZR2019MF060, ZR2017MF008), The Project of Shandong Province Higher Educational Science and Technology Key Program (J18KZ016), The Yantai Science and Technology Plan (2018YT06000271)
  • 摘要: 像素间的上下文相关信息对图像分割算法的抗噪性和准确性具有重要意义,现有的模糊C均值(FCM)聚类算法对此缺乏充分考虑。该文基于对空间上下文的可靠性度量,提出一种模糊C均值聚类算法(RSFCM)应用于图像分割:通过对空间上下文有效建模来提高聚类算法的抗噪声干扰性能,并研究了一种新的可靠性模糊度量指标,使聚类算法能更好地平衡细节保留和去噪,从而获得更加准确的分割结果。实验选取人工合成图像、交通标志图像和遥感图像3类数据测试聚类算法性能,结果表明,RSFCM在图像分割过程中能有效地抑制椒盐噪声和高斯噪声引起的类内异构及类间同构问题,能提高图像的像素可分性,并有效地保留了图像的边缘细节。
  • 图  1  基于上下文可靠性度量模型示意图

    图  2  RSFCM聚类算法流程图

    图  3  RSFCM对含噪声合成图像的聚类结果(情况1)

    图  4  RSFCM对含噪声合成图像的聚类结果(情况2)

    图  5  合成图像的分割结果

    图  6  实际交通标志图像的分割结果

    图  7  遥感图像的分割结果

    表  1  合成图像分割结果的PSNR比较(dB)

    算法FCMFCM_S1FCM_S2FLICMnr-IT2FCMFRFCMRSFCM
    PSNR18.829325.850225.084224.628318.667324.249826.0099
    下载: 导出CSV

    表  2  不同噪声级别下合成图像分割结果的JS系数比较

    算法FCMFCM_S1FCM_S2FLICMnr-IT2FCMFRFCMRSFCM
    Gaussian 8%74.51796.43635.77396.82074.01183.17997.015
    Gaussian 10%72.72994.48937.83096.95472.21772.27895.673
    Gaussian 15%68.67190.35638.30089.43568.42770.46591.817
    Salt &Pepper 8%95.59998.62749.78097.33395.59958.04499.237
    Salt &Pepper 10%94.51997.88296.47896.28994.51985.92598.743
    Salt &Pepper 15%92.60996.61949.68994.76392.60974.50097.882
    下载: 导出CSV

    表  3  交通标志图像分割结果的PSNR比较 (dB)

    算法FCMFCM_S1FCM_S2FLICMnr-IT2FCMFRFCMRSFCM
    PSNR21.406227.708927.084224.628318.675224.249829.6100
    下载: 导出CSV

    表  4  遥感图像分割结果的OA(%)和Kappa系数比较

    类别算法
    样本点FCMFCM_S1FCM_S2FLICMnr-IT2FCMFRFCMRSFCM
    水域1602995.6396.5696.4592.7691.1594.7897.61
    草地221696.7997.2997.8397.9698.2858.3997.79
    林地244962.0772.0268.3162.1843.9834.4667.95
    裸地114074.8282.3380.7984.1472.9159.0671.74
    建筑工地433369.9172.7972.6370.9272.7984.3584.47
    OA总体87.4489.7889.3286.3583.52%82.8191.57
    Kappa总体0.78840.82790.82010.77510.72630.70780.8562
    下载: 导出CSV
  • [1] LU Zhenyu, QIU Yunan, and ZHAN Tianming. Neutrosophic C-means clustering with local information and noise distance-based kernel metric image segmentation[J]. Journal of Visual Communication and Image Representation, 2019, 58: 269–276. doi: 10.1016/j.jvcir.2018.11.045
    [2] SOOMRO S, MUNIR A, and CHOI K N. Fuzzy c-means clustering based active contour model driven by edge scaled region information[J]. Expert Systems with Applications, 2019, 120: 387–396. doi: 10.1016/j.eswa.2018.10.052
    [3] 施伟锋, 卓金宝, 兰莹. 一种基于属性空间相似性的模糊聚类算法[J]. 电子与信息学报, 2019, 41(11): 2722–2728. doi: 10.11999/JEIT180974

    SHI Weifeng, ZHUO Jinbao, and LAN Ying. A novel fuzzy clustering algorithm based on similarity of attribute space[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2722–2728. doi: 10.11999/JEIT180974
    [4] 吴志勇, 丁香乾, 许晓伟, 等. 基于深度学习和模糊C均值的心电信号分类方法[J]. 自动化学报, 2018, 44(10): 1913–1920. doi: 10.16383/j.aas.2018.c170417

    WU Zhiyong, DING Xiangqian, XU Xiaowei, et al. A method for ECG classification using deep learning and fuzzy C-means[J]. Acta Automatica Sinica, 2018, 44(10): 1913–1920. doi: 10.16383/j.aas.2018.c170417
    [5] BEZDEK J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. Boston: Springer, 1981: 203–239. doi: 10.1007/978-1-4757-0450-1.
    [6] ZHANG Tong, SU Guoxi, QING Chunmei, et al. Hierarchical lifelong learning by sharing representations and integrating hypothesis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(12): 1004–1014. doi: 10.1109/TSMC.2018.2884996
    [7] SINGH C and BALA A. A local Zernike moment-based unbiased nonlocal means fuzzy C-Means algorithm for segmentation of brain magnetic resonance images[J]. Expert Systems with Applications, 2019, 118: 625–639. doi: 10.1016/j.eswa.2018.10.023
    [8] 费博雯, 邱云飞, 刘万军, 等. 距离决策下的模糊聚类集成模型[J]. 电子与信息学报, 2018, 40(8): 1895–1903. doi: 10.11999/JEIT171065

    FEI Bowen, QIU Yunfei, LIU Wanjun, et al. Fuzzy clustering ensemble model based on distance decision[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1895–1903. doi: 10.11999/JEIT171065
    [9] AHMED M N, YAMANY S M, MOHAMED N, et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193–199. doi: 10.1109/42.996338
    [10] CHEN Songcan and ZHANG Daoqiang. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 2004, 34(4): 1907–1916. doi: 10.1109/TSMCB.2004.831165
    [11] ZHANG Hua, WANG Qunming, SHI Wenzhong, et al. A novel adaptive fuzzy local information C-means clustering algorithm for remotely sensed imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 5057–5068. doi: 10.1109/TGRS.2017.2702061
    [12] KRINIDIS S and CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1328–1337. doi: 10.1109/TIP.2010.2040763
    [13] LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 3027–3041. doi: 10.1109/TFUZZ.2018.2796074
    [14] XING Haihua, HE Hui, HU Dan, et al. An interval Type-2 fuzzy sets generation method for remote sensing imagery classification[J]. Computers & Geosciences, 2019, 133: 104287. doi: 10.1016/j.cageo.2019.06.008
    [15] CHEN C L P, ZHANG Tong, CHEN Long, et al. I-ching divination evolutionary algorithm and its convergence analysis[J]. IEEE Transactions on Cybernetics, 2017, 47(1): 2–13. doi: 10.1109/TCYB.2015.2512286
    [16] ZHANG Tong, CHEN C L P, CHEN Long, et al. Design of highly nonlinear substitution boxes based on I-ching operators[J]. IEEE Transactions on Cybernetics, 2018, 48(12): 3349–3358. doi: 10.1109/TCYB.2018.2846186
    [17] NEWTON I. Mathematical Principles of Natural Philosophy[M]. London: Benjamin Motte Publishing, 1687.
    [18] 徐超, 詹天明, 孔令成, 等. 基于学生t分布的鲁棒分层模糊算法及其在图像分割中的应用[J]. 电子学报, 2017, 45(7): 1695–1700. doi: 10.3969/j.issn.0372-2112.2017.07.020

    XU Chao, ZHAN Tianming, KONG Lingcheng, et al. A robust hierarchical fuzzy algorithm with student’s t-distribution for image segmentation application[J]. Acta Electronica Sinica, 2017, 45(7): 1695–1700. doi: 10.3969/j.issn.0372-2112.2017.07.020
    [19] 赵凤, 张咪咪, 刘汉强. 区域信息驱动的多目标进化半监督模糊聚类图像分割算法[J]. 电子与信息学报, 2019, 41(5): 1106–1113. doi: 10.12000/JRIT180605

    ZHAO Feng, ZHANG Mimi, and LIU Hanqiang. Multi-objective evolutionary semi-supervised fuzzy clustering image segmentation motivated by region information[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1106–1113. doi: 10.12000/JRIT180605
    [20] CAO Changyu, ZHENG Jiachun, HUANG Yiqi, et al. Investigation of a promoted you only look once algorithm and its application in traffic flow monitoring[J]. Applied Sciences, 2019, 9(17): 3619. doi: 10.3390/app9173619
    [21] ZHANG Lefei, ZHANG Liangpei, DU Bo, et al. Hyperspectral image unsupervised classification by robust manifold matrix factorization[J]. Information Sciences, 2019, 485: 154–169. doi: 10.1016/j.ins.2019.02.008
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1196
  • HTML全文浏览量:  554
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2020-10-23
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-07-10

目录

    /

    返回文章
    返回