高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云雾混合网络下基于多智能体架构的资源分配及卸载决策研究

陈前斌 谭颀 贺兰钦 唐伦

陈前斌, 谭颀, 贺兰钦, 唐伦. 云雾混合网络下基于多智能体架构的资源分配及卸载决策研究[J]. 电子与信息学报, 2021, 43(9): 2654-2662. doi: 10.11999/JEIT200256
引用本文: 陈前斌, 谭颀, 贺兰钦, 唐伦. 云雾混合网络下基于多智能体架构的资源分配及卸载决策研究[J]. 电子与信息学报, 2021, 43(9): 2654-2662. doi: 10.11999/JEIT200256
Qianbin CHEN, Qi TAN, Lanqin HE, Lun TANG. Research on Resource Allocation and Offloading Decision Based on Multi-agent Architecture in Cloud-fog Hybrid Network[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2654-2662. doi: 10.11999/JEIT200256
Citation: Qianbin CHEN, Qi TAN, Lanqin HE, Lun TANG. Research on Resource Allocation and Offloading Decision Based on Multi-agent Architecture in Cloud-fog Hybrid Network[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2654-2662. doi: 10.11999/JEIT200256

云雾混合网络下基于多智能体架构的资源分配及卸载决策研究

doi: 10.11999/JEIT200256
基金项目: 国家自然科学基金(62071078),重庆市教委科学技术研究项目(KJZD-M20180601),重庆市重大主题专项项目(cstc2019jscx-zdztzxX0006)
详细信息
    作者简介:

    陈前斌:男,1967年生,教授,博士生导师,主要研究方向为个人通信、多媒体信息处理与传输、异构蜂窝网络等

    谭颀:女,1995年生,硕士生,研究方向为5G网络C-RAN、资源分配、动态优化理论

    贺兰钦:男,1995年生,硕士生,研究方向为5G网络切片、机器学习算法

    唐伦:男,1973年生,教授,博士,主要研究方向为下一代无线通信网络、异构蜂窝网络、软件定义无线网络等

    通讯作者:

    陈前斌 cqb@cqupt.edu.cn

  • 中图分类号: TN915

Research on Resource Allocation and Offloading Decision Based on Multi-agent Architecture in Cloud-fog Hybrid Network

Funds: The National Natural Science Foundation of China (62071078), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M20180601), The Major Theme Special Projects of Chongqing (cstc2019jscx-zdztzxX0006)
  • 摘要: 针对D2D辅助的云雾混合架构下资源分配及任务卸载决策优化问题,该文提出一种基于多智能体架构深度强化学习的资源分配及卸载决策算法。首先,该算法考虑激励约束、能量约束以及网络资源约束,联合优化无线资源分配、计算资源分配以及卸载决策,建立了最大化系统总用户体验质量(QoE)的随机优化模型,并进一步将其转化为MDP问题。其次,该算法将原MDP问题进行因式分解,并建立马尔可夫博弈模型。然后,基于行动者-评判家(AC)算法提出一种集中式训练、分布式执行机制。在集中式训练过程中,多智能体通过协作获取全局信息,实现资源分配及任务卸载决策策略优化,在训练过程结束后,各智能体独立地根据当前系统状态及策略进行资源分配及任务卸载。最后,仿真结果表明,该算法可以有效提升用户QoE,并降低了时延及能耗。
  • 图  1  D2D辅助的云雾混合网络架构图景

    图  2  不同算法在时延方面的性能

    图  3  不同算法在能耗方面的性能

    图  4  不同权重下的时延性能

    图  5  不同权重下的能耗性能

    表  1  仿真参数

    参数数值参数数值
    信道带宽B1 MHz噪声功率–100 dBm
    路径损耗模型128.1+37.6lg (d)${\kappa _{{K_{n,m}}}},\forall {K_{n,m}} \in {{\boldsymbol{N}}_m}$10–28 Watt×s2 cycles3
    子信道数量10${R_m}(t),\forall m \in {\boldsymbol{M}}$1 Mbps
    $f_{{K_{n,m}}}^l,\forall {K_{n,m}} \in {{\boldsymbol{N}}_m}$Uniform[0.5–1.5]×109 CPU cycles/s$f_{{K_{n,m}}}^{{C}},\forall {K_{n,m}} \in {{\boldsymbol{N}}_m}$4 GHz
    ${D_{{K_{n,m}}}}(t),\forall {K_{n,m}} \in {{\boldsymbol{N}}_m}$Uniform[0.1–1] Mbit$\xi _{{K_{n,m}}}^c$, $\zeta _{{K_{n,m}}}^c$0.5, 0.01
    ${C_{{K_{n,m}}}}(t),\forall {K_{n,m}} \in {{\boldsymbol{N}}_m}$Uniform[500–1500] cycles/bit$E_{{K_{n,m}}}^b$0.25 J
    最大用户传输功率300 mW${f_{m,\max }}$2 GHz
    下载: 导出CSV
  • [1] ARJOUNE Y and FARUQUE S. Artificial intelligence for 5G wireless systems: Opportunities, challenges, and future research direction[C]. 2020 10th Annual Computing and Communication Workshop and Conference(CCWC), Las Vegas, USA, 2020: 1023–1028. doi: 10.1109/CCWC47524.2020.9031117.
    [2] LI Zhuo, ZHOU Xu, and QIN Yifang. A survey of mobile edge computing in the industrial internet[C]. The 7th International Conference on Information, Communication and Networks (ICICN), Macao, China, 2019: 94–98. doi: 10.1109/ICICN.2019.8834959.
    [3] SHAH-MANSOURI H and WONG V W S. Hierarchical fog-cloud computing for IoT systems: A computation offloading game[J]. IEEE Internet of Things Journal, 2018, 5(4): 3246–3257. doi: 10.1109/JIOT.2018.2838022
    [4] HE Yinghui, REN Jinke, Yu Guanding, et al. D2D communications meet mobile edge computing for enhanced computation capacity in cellular networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(3): 1750–1763. doi: 10.1109/TWC.2019.2896999
    [5] YI Changyan, HUANG Shiwei, and CAI Jun. Joint resource allocation for device-to-device communication assisted fog computing[J]. IEEE Transactions on Mobile Computing, 2021, 20(3): 1076–1091. doi: 10.1109/TMC.2019.2952354
    [6] DINH T Q, LA Q D, QUEK T Q S, et al. Learning for computation offloading in mobile edge computing[J]. IEEE Transactions on Communications, 2018, 66(12): 6353–6367. doi: 10.1109/TCOMM.2018.2866572
    [7] LIU Yiming, YU F R, LI Xi, et al. Distributed resource allocation and computation offloading in fog and cloud networks with non-orthogonal multiple access[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 12137–12151. doi: 10.1109/TVT.2018.2872912
    [8] 向旭东. 云计算性能与节能的动态优化研究[D]. [博士论文], 北京科技大学, 2015.

    XIANG Xudong. Dynamic optimization of performance and energy consumption in cloud computing[D]. [Ph. D. dissertation], University of Science and Technology Beijing, 2015.
    [9] MIN Minghui, XIAO Liang, CHEN Ye, et al. Learning-based computation offloading for IoT devices with energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1930–1941. doi: 10.1109/TVT.2018.2890685
    [10] LI Zheng and GUO Caili. Multi-agent deep reinforcement learning based spectrum allocation for D2D underlay communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1828–1840. doi: 10.1109/TVT.2019.2961405
    [11] ZHONG Chen, GURSOY M C, and VELIPASALAR S. Deep multi-agent reinforcement learning based cooperative edge caching in wireless networks[C]. The ICC 2019–2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6. doi: 10.1109/ICC.2019.8762084.
    [12] NGUYEN K K, DUONG T Q, VIEN N A, et al. Distributed deep deterministic policy gradient for power allocation control in D2D-based V2V communications[J]. IEEE Access, 2019, 7: 164533–164543. doi: 10.1109/ACCESS.2019.2952411
    [13] DU Jianbo, ZHAO Liqiang, FENG Jie, et al. Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee[J]. IEEE Transactions on Communications, 2018, 66(4): 1594–1608. doi: 10.1109/TCOMM.2017.2787700
    [14] AMIRI R., ALMASI M A, ANDREWS J G, et al. Reinforcement learning for self organization and power control of two-tier heterogeneous networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 3933–3947. doi: 10.1109/TWC.2019.2919611
    [15] LOWE R, WU Yi, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6379–6390.
    [16] YANG Bo, SHEN Yanyan, HAN Qiaoni, et al. Energy-efficient resource allocation for time-varying OFDMA relay systems with hybrid energy supplies[J]. IEEE Systems Journal, 2018, 12(1): 702–713. doi: 10.1109/JSYST.2016.2551319
    [17] MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1232
  • HTML全文浏览量:  403
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2021-03-02
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-09-16

目录

    /

    返回文章
    返回