Permutation-mode Orthogonal Frequency Division Multiplexing System with Index Modulation
-
摘要: 多模索引调制正交频分复用系统(MM-OFDM-IM)在索引调制正交频分复用系统的基础上采用不同星座集对系统中的全部子载波进行索引调制,能有效地提高系统的子载波利用率和频谱效率。但全部子载波的利用影响了系统的子载波间抗干扰能力,导致误码率性能下降。针对这一问题,该文提出排列模式索引调制正交频分复用系统(PM-OFDM-IM)。该系统在MM-OFDM-IM的基础上重新引入静默子载波,既能保证系统较高的频谱效率,又能提高系统的误码率性能。同时该文提出一种基于幅值相移键控的分类映射模式,即按半径大小排列的星座集分类模式(PCC-R),该模式能够良好结合系统传输的额外信息。最后仿真结果验证,该系统能够更优地均衡系统的频谱效率和误码率性能,且所提分类映射方案可以达到更优的系统性能。Abstract: Multi-Mode Orthogonal Frequency Division Multiplexing system with Index Modulation(MM-OFDM-IM) uses different constellation sets on the basis of orthogonal frequency division Multiplexing with index modulation to index modulate all subcarriers in the system, which can effectively improve the subcarrier utilization and spectrum efficiency. However, the utilization of all subcarriers will affect the anti-interference ability of the system sub-carriers, which will cause the system’s bit error rate performance to decrease. To solve this problem, a Permutation-Mode Orthogonal Frequency Division Multiplexing with Index Modulation (PM-OFDM-IM) is proposed, which is based on the MM-OFDM-IM. This system re-introduces the silent subcarrier, which can ensure the system’s higher spectral efficiency and improve the system’s bit error rate performance. Further, a classification mapping mode is proposed based on amplitude phase shift keying, i.e. a Permutation Constellation set Classification mode arranged by Radius (PCC-R). This mode can combine system information well. Finally, simulation results verify that the system can better balance the spectral efficiency and the bit error rate performance of the system, and the proposed classification mapping scheme can achieve better system performance.
-
表 1 PM-OFDM-IM系统发送表
索引激活比特 索引排列比特 发送模式 0 0 ${[{Q_1},{Q_2},0]^{\rm{T}}}$ 0 1 ${[{Q_2},{Q_1},0]^{\rm{T}}}$ 1 0 ${[0,{Q_1},{Q_2}]^{\rm{T}}}$ 1 1 ${[0,{Q_2},{Q_1}]^{\rm{T}} }$ 表 2 J=3,可能的排列模式
子块 1 2 3 ··· g 圆半径(大) ${y_1}\left( 3 \right)$ ${y_2}\left( 1 \right)$ ${y_3}\left( 3 \right)$ ··· ${y_g}\left( 1 \right)$ 圆半径(中) ${y_1}\left( 1 \right)$ ${y_2}\left( 3 \right)$ ${y_3}\left( 2 \right)$ ··· ${y_g}\left( 3 \right)$ 圆半径(小) ${y_1}\left( 2 \right)$ ${y_2}\left( 2 \right)$ ${y_3}\left( 1 \right)$ ··· ${y_g}\left( 2 \right)$ -
[1] BAKER M. From LTE-advanced to the future[J]. IEEE Communications Magazine, 2012, 50(2): 116–120. doi: 10.1109/MCOM.2012.6146490 [2] WANG Chengxiang, FOURAT H, GAO Xiqi, et al. Cellular architecture and key technologies for 5G wireless communication networks[J]. IEEE Communications Magazine, 2014, 52(2): 122–130. doi: 10.1109/MCOM.2014.6736752 [3] MAO Tianqi, WANG Qi, WANG Zhaocheng, et al. Novel index modulation techniques: A survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 315–348. doi: 10.1109/COMST.2018.2858567 [4] SACCHI C, RAHMAN T F, HEMADEH I A, et al. Millimeter-wave transmission for small-cell backhaul in dense urban environment: A solution based on MIMO-OFDM and Space-Time Shift Keying (STSK)[J]. IEEE Access, 2017, 5: 4000–4017. doi: 10.1109/ACCESS.2017.2680435 [5] RAHMAN T F, HABIB A, SACCHI C, et al. Mm-Wave STSK-aided Single Carrier block transmission for broadband networking[C]. 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 2017: 507–514. doi: 10.1109/ISCC.2017.8024579. [6] CUI Yaping and FANG Xuming. Performance analysis of massive spatial modulation MIMO in high-speed railway[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 8925–8932. doi: 10.1109/TVT.2016.2518710 [7] SUDHAKARAN D U and RAJAN B S. Index coded PSK modulation for prioritized receivers[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 11151–11165. doi: 10.1109/TVT.2017.2737141 [8] WEN Miaowen, CHENG Xiang, and YANG Liuqing. Index Modulation for 5G Wireless Communications[M]. Cham: Springer, 2017: 103–149. [9] BAŞAR E, AYGÖLÜ Ü, PANAYIRCI E, et al. Orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Signal Processing, 2013, 61(22): 5536–5549. doi: 10.1109/TSP.2013.2279771 [10] 李泳志, 陶成, 刘留, 等. 莱斯信道下分布式大规模MIMO系统基站选择算法的研究[J]. 电子与信息学报, 2016, 38(4): 856–862. doi: 10.11999/JEIT150811LI Yongzhi, TAO Cheng, LIU Liu, et al. Base station selection algorithm for distributed massive MIMO system over rician fading channels[J]. Journal of Electronics &Information Technology, 2016, 38(4): 856–862. doi: 10.11999/JEIT150811 [11] FAN Rui, YU Yajun, and GUAN Yongliang. Generalization of orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Wireless Communications, 2015, 14(10): 5350–5359. doi: 10.1109/TWC.2015.2436925 [12] WEN Miaowen, YE Binbin, ERTUGRUL B, et al. Enhanced orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Wireless Communications, 2017, 16(7): 4786–4801. doi: 10.1109/TWC.2017.2702618 [13] MAO Tianqi, WANG Zhaocheng, WANG Qi, et al. Dual-mode index modulation aided OFDM[J]. IEEE Access, 2016, 5: 50–60. doi: 10.1109/ACCESS.2016.2601648 [14] MAO Tianqi, WANG Qi, and WANG Zhaocheng. Generalized dual-mode index modulation aided OFDM[J]. IEEE Communications Letters, 2017, 21(4): 761–764. doi: 10.1109/LCOMM.2016.2635634 [15] EN Miaowen, BASAR E, LI Qiang, et al. Multiple-mode orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Communications, 2017, 65(9): 3892–3906. doi: 10.1109/TCOMM.2017.2710312 [16] 彭聪, 许鹏, 陈翔, 等. MIMO-OFDM系统中各天线独立相位噪声的影响[J]. 电子与信息学报, 2017, 39(12): 2999–3003. doi: 10.11999/JEIT170260PENG Cong, XU Peng, CHEN Xiang, et al. Influence of independent phase noises on MIMO-OFDM systems[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2999–3003. doi: 10.11999/JEIT170260