高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

排列模式索引调制正交频分复用系统

邵凯 金庚 王光宇 周博文

邵凯, 金庚, 王光宇, 周博文. 排列模式索引调制正交频分复用系统[J]. 电子与信息学报, 2021, 43(9): 2640-2646. doi: 10.11999/JEIT200248
引用本文: 邵凯, 金庚, 王光宇, 周博文. 排列模式索引调制正交频分复用系统[J]. 电子与信息学报, 2021, 43(9): 2640-2646. doi: 10.11999/JEIT200248
Kai SHAO, Geng JIN, Guangyu WANG, Bowen ZHOU. Permutation-mode Orthogonal Frequency Division Multiplexing System with Index Modulation[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2640-2646. doi: 10.11999/JEIT200248
Citation: Kai SHAO, Geng JIN, Guangyu WANG, Bowen ZHOU. Permutation-mode Orthogonal Frequency Division Multiplexing System with Index Modulation[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2640-2646. doi: 10.11999/JEIT200248

排列模式索引调制正交频分复用系统

doi: 10.11999/JEIT200248
详细信息
    作者简介:

    邵凯:男,1977年生,副教授,研究方向为新型多载波调制技术、新型多址接入技术

    金庚:男,1996年生,硕士生,研究方向为索引调制技术与应用

    王光宇:男,1964年生,教授,研究方向为新型多载波调制技术、新型多址接入技术

    周博文:男,1993年生,硕士生,研究方向为新型调制技术

    通讯作者:

    邵凯 shaokai@cqupt.edu.cn

  • 中图分类号: TN911

Permutation-mode Orthogonal Frequency Division Multiplexing System with Index Modulation

  • 摘要: 多模索引调制正交频分复用系统(MM-OFDM-IM)在索引调制正交频分复用系统的基础上采用不同星座集对系统中的全部子载波进行索引调制,能有效地提高系统的子载波利用率和频谱效率。但全部子载波的利用影响了系统的子载波间抗干扰能力,导致误码率性能下降。针对这一问题,该文提出排列模式索引调制正交频分复用系统(PM-OFDM-IM)。该系统在MM-OFDM-IM的基础上重新引入静默子载波,既能保证系统较高的频谱效率,又能提高系统的误码率性能。同时该文提出一种基于幅值相移键控的分类映射模式,即按半径大小排列的星座集分类模式(PCC-R),该模式能够良好结合系统传输的额外信息。最后仿真结果验证,该系统能够更优地均衡系统的频谱效率和误码率性能,且所提分类映射方案可以达到更优的系统性能。
  • 图  1  PM-OFDM-IM发送框图

    图  2  高斯信道下PM-OFDM-IM系统BER性能比较

    图  3  瑞利衰落信道下PM-OFDM-IM系统BER性能比较

    图  4  PM-OFDM-IM系统的抗频偏能力比较

    图  5  PM-OFDM-IM系统的可达速率比较

    图  6  使用PCC-R,PM-OFDM-IM系统的BER比较

    表  1  PM-OFDM-IM系统发送表

    索引激活比特索引排列比特发送模式
    00${[{Q_1},{Q_2},0]^{\rm{T}}}$
    01${[{Q_2},{Q_1},0]^{\rm{T}}}$
    10${[0,{Q_1},{Q_2}]^{\rm{T}}}$
    11${[0,{Q_2},{Q_1}]^{\rm{T}} }$
    下载: 导出CSV

    表  2  J=3,可能的排列模式

    子块123···g
    圆半径(大)${y_1}\left( 3 \right)$${y_2}\left( 1 \right)$${y_3}\left( 3 \right)$···${y_g}\left( 1 \right)$
    圆半径(中)${y_1}\left( 1 \right)$${y_2}\left( 3 \right)$${y_3}\left( 2 \right)$···${y_g}\left( 3 \right)$
    圆半径(小)${y_1}\left( 2 \right)$${y_2}\left( 2 \right)$${y_3}\left( 1 \right)$···${y_g}\left( 2 \right)$
    下载: 导出CSV
  • [1] BAKER M. From LTE-advanced to the future[J]. IEEE Communications Magazine, 2012, 50(2): 116–120. doi: 10.1109/MCOM.2012.6146490
    [2] WANG Chengxiang, FOURAT H, GAO Xiqi, et al. Cellular architecture and key technologies for 5G wireless communication networks[J]. IEEE Communications Magazine, 2014, 52(2): 122–130. doi: 10.1109/MCOM.2014.6736752
    [3] MAO Tianqi, WANG Qi, WANG Zhaocheng, et al. Novel index modulation techniques: A survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 315–348. doi: 10.1109/COMST.2018.2858567
    [4] SACCHI C, RAHMAN T F, HEMADEH I A, et al. Millimeter-wave transmission for small-cell backhaul in dense urban environment: A solution based on MIMO-OFDM and Space-Time Shift Keying (STSK)[J]. IEEE Access, 2017, 5: 4000–4017. doi: 10.1109/ACCESS.2017.2680435
    [5] RAHMAN T F, HABIB A, SACCHI C, et al. Mm-Wave STSK-aided Single Carrier block transmission for broadband networking[C]. 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 2017: 507–514. doi: 10.1109/ISCC.2017.8024579.
    [6] CUI Yaping and FANG Xuming. Performance analysis of massive spatial modulation MIMO in high-speed railway[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 8925–8932. doi: 10.1109/TVT.2016.2518710
    [7] SUDHAKARAN D U and RAJAN B S. Index coded PSK modulation for prioritized receivers[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 11151–11165. doi: 10.1109/TVT.2017.2737141
    [8] WEN Miaowen, CHENG Xiang, and YANG Liuqing. Index Modulation for 5G Wireless Communications[M]. Cham: Springer, 2017: 103–149.
    [9] BAŞAR E, AYGÖLÜ Ü, PANAYIRCI E, et al. Orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Signal Processing, 2013, 61(22): 5536–5549. doi: 10.1109/TSP.2013.2279771
    [10] 李泳志, 陶成, 刘留, 等. 莱斯信道下分布式大规模MIMO系统基站选择算法的研究[J]. 电子与信息学报, 2016, 38(4): 856–862. doi: 10.11999/JEIT150811

    LI Yongzhi, TAO Cheng, LIU Liu, et al. Base station selection algorithm for distributed massive MIMO system over rician fading channels[J]. Journal of Electronics &Information Technology, 2016, 38(4): 856–862. doi: 10.11999/JEIT150811
    [11] FAN Rui, YU Yajun, and GUAN Yongliang. Generalization of orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Wireless Communications, 2015, 14(10): 5350–5359. doi: 10.1109/TWC.2015.2436925
    [12] WEN Miaowen, YE Binbin, ERTUGRUL B, et al. Enhanced orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Wireless Communications, 2017, 16(7): 4786–4801. doi: 10.1109/TWC.2017.2702618
    [13] MAO Tianqi, WANG Zhaocheng, WANG Qi, et al. Dual-mode index modulation aided OFDM[J]. IEEE Access, 2016, 5: 50–60. doi: 10.1109/ACCESS.2016.2601648
    [14] MAO Tianqi, WANG Qi, and WANG Zhaocheng. Generalized dual-mode index modulation aided OFDM[J]. IEEE Communications Letters, 2017, 21(4): 761–764. doi: 10.1109/LCOMM.2016.2635634
    [15] EN Miaowen, BASAR E, LI Qiang, et al. Multiple-mode orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Communications, 2017, 65(9): 3892–3906. doi: 10.1109/TCOMM.2017.2710312
    [16] 彭聪, 许鹏, 陈翔, 等. MIMO-OFDM系统中各天线独立相位噪声的影响[J]. 电子与信息学报, 2017, 39(12): 2999–3003. doi: 10.11999/JEIT170260

    PENG Cong, XU Peng, CHEN Xiang, et al. Influence of independent phase noises on MIMO-OFDM systems[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2999–3003. doi: 10.11999/JEIT170260
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  806
  • HTML全文浏览量:  559
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-07
  • 修回日期:  2020-12-15
  • 网络出版日期:  2021-01-05
  • 刊出日期:  2021-09-16

目录

    /

    返回文章
    返回