A Candidate Waveform Scheme for High-Frequency Scenarios
-
摘要: 针对高频场景(>52.6 GHz)面临的主要问题:路径损耗比较大、功率放大器的效率比较低和相位噪声比较高等,该文设计了一种高频场景候选波形方案。该候选波形方案包括基本符号结构的增强设计、发射端和接收端结构的增强设计,以及尾部序列长度可变方案设计等。相比于5G现有波形DFT-s-OFDM,该文提出的高频场景候选波形方案具有更高的频谱效率。仿真结果显示该候选波形方案具有峰均比低、相位噪声估计效果好和带外泄漏小等优点。Abstract: A candidate waveform scheme is designed to deal with the main problems in the high-frequency scenarios (>52.6 GHz) such as relatively large path loss, low efficiency of power amplifier and high phase noise. This candidate waveform scheme designs the enhanced fundamental symbol structure, the enhanced transmitter and the receiver structure, and tail sequence length variable schemes. Compared with the 5G waveform DFT-s-OFDM, the proposed candidate waveform scheme improves the spectrum efficiency. The simulation results show that the candidate waveform scheme has lower peak-to-average power ratio, better phase noise estimation and compensation effect, and lower out-of-band leakage.
-
表 1 仿真参数
参数 DFT-s-OFDM E DFT-s-OFDM 调制方案 π/2 BPSK FFT点数 288 IFFT点数 4096 DMRS ZC Sequence(ZadOff-Chu Sequence) (S2, S1)序列长度 无(有CP) (6,14) FDSS 无或者根升余弦滤波器,滚降因子:0.3 根升余弦滤波器,滚降因子:0.3 表 2 仿真参数
参数 取值 DFT-s-OFDM E DFT-s-OFDM 天线 SISO(Single Input Single Output) 载频 60 GHz 编码调制方案 LDPC(Low Density Parity Check, CodeRate=1/2), 16QAM 子带带宽 24 RB(12 subcarriers per Resource Block) 子载波间隔 960 kHz FFT大小 4096 信道类型 TDL-A(延时扩展: 10 ns,多普勒频移: 10 Hz) CP长度 0.037 μs (S2和S1)序列长度 无(有CP) (6,14) DMRS ZC Sequence(ZadOff-Chu Sequence) PTRS 时域密度为1;有4组PTRS,每组含有2个样点 无 FDSS 根升余弦滤波器,滚降因子:0.3 -
POPOVSKI P, TRILLINGSGAARD K F, SIMEONE O, et al. 5G Wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view[J]. IEEE Access, 2018, 6: 55765–55779. doi: 10.1109/ACCESS.2018.2872781 3GPP R1–1803552 CR to 38.211 capturing the Jan18 ad-hoc and RAN1#92 meeting agreements[S]. 2018. 赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J]. 中国科学: 信息科学, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. Scientia Sinica Informationis, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033 WELLS J. Faster than fiber: The future of multi-G/s wireless[J]. IEEE Microwave Magazine, 2009, 10(3): 104–112. doi: 10.1109/MMM.2009.932081 陈亮, 余少华. 6G移动通信发展趋势初探(特邀)[J]. 光通信研究, 2019, 45(4): 1–8.CHEN Liang and YU Shaohua. Preliminary study on the trend of 6G mobile communication[J]. Study on Optical Communications, 2019, 45(4): 1–8. SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287 刘西川, 宋堃, 高太长, 等. 复杂大气条件对微波传播衰减的影响研究[J]. 电子与信息学报, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253LIU Xichuan, SONG Kun, GAO Taichang, et al. Research on the effect of complex atmospheric condition on microwave propagation attenuation[J]. Journal of Electronics &Information Technology, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253 邢金强, 马帅, 肖善鹏. 高频段5G终端射频实现与挑战[J]. 移动通信, 2017, 41(7): 15–19. doi: 10.3969/j.issn.1006-1010.2017.07.003XING Jinqiang, MA Shuai, and XIAO Shanpeng. Implementation and challenge of high-frequency 5G terminal[J]. Mobile Communications, 2017, 41(7): 15–19. doi: 10.3969/j.issn.1006-1010.2017.07.003 CHEN Zhi, MA Xinying, ZHANG Bo, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2): 1–35. LEVINBOOK Y, EZRI D, and MELZER E. Low-PAPR OFDM-based waveform for fifth-generation cellular communications[C]. 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 2017: 187–192. doi: 10.1109/COMCAS.2017.8244846. KIM J, YUN Y H, KIM C, et al. Minimization of PAPR for DFT-Spread OFDM with BPSK symbols[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 11746–11758. doi: 10.1109/TVT.2018.2874688 KIM J, YUN Y H, KIM C, et al. A further PAPR reduction for π/2 BPSK in 5G new radio[C]. The 88th IEEE Vehicular Technology Conference, Chicago, USA, 2018. doi: 10.1109/VTCFall.2018.8690859. SIBEL J C. Pilot-based phase noise tracking for uplink DFT-s-OFDM in 5G[C]. The 25th International Conference on Telecommunications (ICT), St. Malo, France, 2018: 52–56. 3GPP TS38.211 Technical specification group radio access network; NR; Physical channels and modulation[S]. 2016. BOONKAJAY A and ADACHI F. Single-carrier transmission with frequency-domain based code-division multi-access[C]. The 20th Asia-Pacific Conference on Communication, Pattaya, Thailand, 2014: 233–238. 3GPP TR38.901 Technical specification group radio access networks. Study on channel model for frequencies from 0.5 to 100 GHz[S]. 2017.