高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ACE密码算法的积分分析

叶涛 韦永壮 李灵琛

叶涛, 韦永壮, 李灵琛. ACE密码算法的积分分析[J]. 电子与信息学报, 2021, 43(4): 908-914. doi: 10.11999/JEIT200234
引用本文: 叶涛, 韦永壮, 李灵琛. ACE密码算法的积分分析[J]. 电子与信息学报, 2021, 43(4): 908-914. doi: 10.11999/JEIT200234
Tao YE, Yongzhuang WEI, Lingchen LI. Integral Cryptanalysis of ACE Encryption Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(4): 908-914. doi: 10.11999/JEIT200234
Citation: Tao YE, Yongzhuang WEI, Lingchen LI. Integral Cryptanalysis of ACE Encryption Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(4): 908-914. doi: 10.11999/JEIT200234

ACE密码算法的积分分析

doi: 10.11999/JEIT200234
基金项目: 国家自然科学基金(61872103),广西重点研发计划(桂科AB18281019),广西自然科学基金创新研究团队项目(2019GXNSFGA245004),广西研究生教育创新计划(YCBZ2018051),认知无线电与信息处理省部共建教育部重点实验室主任基金(CRKL180107)
详细信息
    作者简介:

    叶涛:男,1991年生,博士生,研究方向为对称密码算法设计与分析

    韦永壮:男,1976年生,教授,博士生导师,研究方向为对称密码算法设计与分析、加密芯片侧信道攻击与防御技术、网络安全协议分析

    李灵琛:女,1988年生,博士,研究方向为分组密码算法设计与分析

    通讯作者:

    韦永壮 walker_wyz@guet.edu.cn

  • 中图分类号: TN918

Integral Cryptanalysis of ACE Encryption Algorithm

Funds: The National Natural Science Foundation of China(61872103), The Foundation of Guangxi Science and Technology Program (Guike AB18281019), The Innovation Research Team Project of Guangxi Natural Science Foundation(2019GXNSFGA245004), The Innovation Project of Guangxi Graduate Education(YCBZ2018051), The Foundation of Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (Guilin University of Electronic Technology)(CRKL180107)
  • 摘要: ACE是国际轻量级密码算法标准化征集竞赛第2轮候选算法之一。该算法具有结构简洁,软硬件实现快、适用于资源受限环境等特点,其安全性备受业界广泛关注。该文引入字传播轨迹新概念,构建了一个传播轨迹的描述模型,并给出一个可以自动化评估分组密码算法抵抗积分攻击能力的方法。基于ACE算法结构特点,将该自动化搜索方法应用于评估ACE算法的安全性。结果表明:ACE置换存在12步的积分区分器,需要的数据复杂度为2256,时间复杂度为2256次12步的ACE置换运算,存储复杂度为8 Byte。相比于ACE算法设计者给出的积分区分器,该新区分器的步数提高了4步。
  • 图  1  ACE置换

    表  1  文中用到的符号

    符号定义
    ${{X}} \oplus {{Y}}$表示${{X}}$和${{Y}}$之间按位异或
    +/–十进制加/减
    ${{X}}||{{Y}}$表示${{X}}$和${{Y}}$串联
    ${1^n}/{0^n}$表示$n$ bit全1或全0的比特串
    ${\rm{SB}}_j^i({{X}})$表示ACE置换第$i$步的第$j$个密码S盒
    ${\rm{|}}{{X}}{\rm{|}}$表示集合${{X}}$中元素的个数
    $(\alpha ,{{\beta }}) = \max (x[0],x[1], ··· ,x[n - 1])$计算数组$[x[0],x[1], ··· ,x[n - 1]]$的最大值$\alpha $以及最大值对应的下标的集合${{\beta }}$,例如$\max (2,2,1,0) = (2,[0,1])$
    $\alpha = {\max '}(x[0],x[1], ··· ,x[n - 1])$计算数组$[x[0],x[1], ··· ,x[n - 1]]$中的最大值$\alpha $
    $(\alpha ,{{\beta }}) = \min (x[0],x[1], ··· ,x[n - 1])$计算数组$[x[0],x[1] ··· ,x[n - 1]]$的最小值$\alpha $以及最小值对应的下标的集合${{\beta }}$,例如$\min (2,2,1,0) = (0,[3])$
    $\alpha = {\min'}(x[0],x[1], ··· ,x[n - 1])$计算数组$[x[0],x[1], ··· ,x[n - 1]]$的最小值$\alpha $
    下载: 导出CSV

    表  2  算法1:利用字传播模型确定$r_{\rm{e}}^k$

     输入:分组密码轮函数${f_{\rm{r}}} \in {(F_2^n)^m}$,加密轮数$R$,活跃字的下标$k$
     输出:$r_{\rm{e}}^k$,以及加密$r_{\rm{e}}^k$轮后,当第$k$个字活跃时,输出状态中的平衡字的下标集合${{{\omega }}_k}$
     (1) ${r_{\rm{h}}} = R$, ${r_{\rm{l}}} = 0$, $r_{\rm{e}}^k = 0$, $r = 0$, flag= 0
     (2) $x_k^i[0]$, $x_k^i[1]$, $ ··· $, $x_k^i[m - 1]$为$i$轮加密后,输出状态对应的MILP模型变量,每一个MILP变量的值范围是大于等于0的整数
     (3) While ${r_{\rm{h}}} - {r_{\rm{l}}} > 1$ do
     (4)  $r = \left\lfloor {({r_{\rm{h}}} + {r_{\rm{l}}})/2} \right\rfloor $
     (5)  利用性质3和性质4构建出$r$轮的字传播模型${M_{\rm{e}}}$
     (6)  ${M_{\rm{e}}}.{\rm{con}} \leftarrow x_k^0[k] = 1,M.{\rm{con}} \leftarrow x_k^0[j] = 0,j \in [0,m), j \ne k$
     (7)  ${M_{\rm{e}}}.{\rm{con}} \leftarrow {\min' }\{ (x_k^r[0],x_k^r[1], \cdots ,x_k^r[m - 1])\} = 1$
     (8)  利用求解器对模型${M_{\rm{e}}}$进行求解
     (9)  If Me 有解
     (10)   ${r_{\rm{l}}} = r,{\rm{ flag }} = 1$
     (11)  else
     (12)   ${r_{\rm{h}}} = r,{\rm{ flag}} = 0$
     (13)  End If
     (14) End While
     (15) If ${\rm{flag}} = = 1$
     (16)  $r_{\rm{e}}^k = r$
     (17) else
     (18)  $r_{\rm{e}}^k = r - 1$
     (19)End If
     (20)$(1,{{{\omega }}_k}) = \min \{ (x_k^{r_{\rm{e}}^k}[0],x_k^{r_{\rm{e}}^k}[1], \cdots ,x_k^{r_{\rm{e}}^k}[m - 1])\} $
     (21) return $r_{\rm{e}}^k$和${{{\omega }}_k}$
    下载: 导出CSV

    表  3  算法2:利用字传播模型确定$r_{\rm{d}}^k$

     输入:分组密码解密轮函数${f_{\rm{r}}}^{ - 1} \in {(F_2^n)^m}$,解密轮数$R$,活跃字的下标$k$
     输出:$r_{\rm{d}}^k$,以及解密$r_{\rm{d}}^k$轮后,输出状态中的不包含第$k$个字的下标集合${{{\varphi }}_k}$
     (1) ${r_{\rm{h}}} = R$, ${r_{\rm{l}}} = 0$, $r_{\rm{d}}^k = 0$, $r = 0$, ${\rm{flag}} = 0$
     (2) $y_k^i[0]$, $y_k^i[1]$, $ ··· $, $y_k^i[m - 1]$为第$i$轮解密输出状态对应的MILP模型变量,每一个MILP变量的值范围是大于等于0的整数
     (3) While ${r_{\rm{h}}} - {r_{\rm{l}}} > 1$ do
     (4)  $r = \left\lfloor {({r_{\rm{h}}} + {r_{\rm{l}}})/2} \right\rfloor $
     (5)  利用性质3和性质4构建出$r$轮的字解密传播模型${M_{\rm{d}}}$
     (6)  ${M_{\rm{d}}}.{\rm{con}} \leftarrow y_k^0[k] = 1,M.{\rm{con}} \leftarrow y_k^0[j] = 0,j \in [0,m),j \ne k$
     (7)  ${M_{\rm{d}}}.{\rm{con}} \leftarrow {\min '}\{ (y_k^r[0],y_k^r[1], ··· ,y_k^r[m - 1])\} = 0$
     (8)  利用求解器对模型${M_{\rm{d}}}$进行求解
     (9)  If Md 有解
     (10)   ${r_{\rm{l}}} = r,{\rm{ flag }} = 1$
     (11)  else
     (12)   ${r_{\rm{h}}} = r,{\rm{ flag}} = 0$
     (13)  End If
     (14) End While
     (15) If ${\rm{flag}} = = 1$
     (16)  $r_{\rm{d}}^k = r$
     (17) else
     (18)  $r_{\rm{d}}^k = r - 1$
     (19) End If
     (20) $(0,{{{\varphi }}_k}) = \min \{ (y_k^{r_{\rm{d}}^k}[0],y_k^{r_{\rm{d}}^k}[1], ··· ,y_k^{r_{\rm{d}}^k}[m - 1])\} $
     (21) return $r_{\rm{d}}^k$和${{{\varphi }}_k}$
    下载: 导出CSV

    表  4  ACE置换对应的$r_{\rm{e}}^k$${{{\omega }}_k}$

    $k$$r_{\rm{e}}^k$${{{\omega }}_k}$
    08[1]
    18[3]
    27[1]
    39[1]
    47[3]
    下载: 导出CSV

    表  5  ACE置换对应的$r_{\rm{d}}^k$${{{\varphi }}_k}$

    $k$$r_{\rm{d}}^k$${{{\varphi }}_k}$
    04[0]
    13[4]
    25[0]
    33[0]
    44[4]
    下载: 导出CSV

    表  6  ACE置换12步的积分区分器

    输入形式输出形式
    ${c^{64}}{a^{64}}{a^{64}}{a^{64}}{a^{64}}$${u^{64}}{b^{64}}{u^{64}}{u^{64}}{u^{64}}$
    注:${c^{64}}$表示任意的一个64 bit的常数,${a^{64}}$表示64 bit的活跃字集,${b^{64}}$表示64 bit的平衡字集,${u^{64}}$表示64 bit的未知字集。
    下载: 导出CSV

    表  7  ACE置换积分分析结果对比

    分析方法积分区分器步数选择明文量方法
    除属性8${2^{319}}$文献[19]
    字传播轨迹12${2^{256}}$本文
    下载: 导出CSV
  • MATSUI M. Linear cryptanalysis method for DES cipher[C]. Workshop on the Theory and Application of Cryptographic Techniques on Advances in Cryptology, Lofthus, Norway, 1993: 386–397. doi: 10.1007/3-540-48285-7_33.
    BIHAM E and SHAMIR A. Differential cryptanalysis of DES-like cryptosystems[J]. Journal of Cryptology, 1991, 4(1): 3–72. doi: 10.1007/BF00630563
    BIHAM E, BIRYUKOV A, and SHAMIR A. Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials[C]. International Conference on the Theory and Application of Cryptographic Techniques Prague on Advances in Cryptology, Prague, Czech Republic, 1999: 12–23. doi: 10.1007/3-540-48910-X_2.
    韦永壮, 史佳利, 李灵琛. LiCi分组密码算法的不可能差分分析[J]. 电子与信息学报, 2019, 41(7): 1610–1617. doi: 10.11999/JEIT180729

    WEI Yongzhuang, SHI Jiali, and LI Lingchen. Impossible differential cryptanalysis of LiCi block cipher[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1610–1617. doi: 10.11999/JEIT180729
    DINUR I and SHAMIR A. Cube attacks on tweakable black box polynomials[C]. The 28th Annual International Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology, Cologne, Germany, 2009: 278–299. doi: 10.1007/978-3-642-01001-9_16.
    KNUDSEN L and WAGNER D. Integral cryptanalysis[C]. The 9th International Workshop on Fast Software Encryption, Leuven, Belgium, 2002: 112–127. doi: 10.1007/3-540-45661-9_9.
    TODO Y. Structural evaluation by generalized integral property[C]. The 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology, Sofia, Bulgaria, 2015: 287–314. doi: 10.1007/978-3-662-46800-5_12.
    LI Yanjun, WU Wenling, and ZHANG Lei. Improved integral attacks on reduced-round CLEFIA block cipher[C]. The 12th International Workshop on Information Security Applications, Jeju Island, Korea, 2011: 28–39. doi: 10.1007/978-3-642-27890-7_3.
    Z’ABA M R, RADDUM H, HENRICKSEN M, et al. Bit-Pattern based integral attack[C]. The 15th International Workshop on Fast Software Encryption, Lausanne, Switzerland, 2008: 363–381. doi: 10.1007/978-3-540-71039-4_23.
    LIU Meicheng. Degree evaluation of NFSR-based cryptosystems[C]. The 37th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2017: 20–24. doi: 10.1007/978-3-319-63697-9_8.
    BOURA C, CANTEAUT A, and DE CANNIÈRE C. Higher-order differential properties of KECCAK and LUFFA[C]. The 18th International Workshop on Fast Software Encryption, Lyngby, Denmark, 2011: 252–269. doi: 10.1007/978-3-642-21702-9_15.
    TODO Y and MORII M. Bit-based division property and application to SIMON family[C]. The 23rd International Workshop on Fast Software Encryption, Bochum, Germany, 2016: 357–377. doi: 10.1007/978-3-662-52993-5_18.
    XIANG Zejun, ZHANG Wentao, BAO Zhenzhen, et al. Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers[C]. The 22nd International Conference on the Theory and Application of Cryptology and Information Security on Advances in Cryptology, Hanoi, Vietnam, 2016: 648–678. doi: 10.1007/978-3-662-53887-6_24.
    WANG Senpeng, HU Bin, GUAN Jie, et al. MILP-aided method of searching division property using three subsets and applications[C]. The 25th International Conference on the Theory and Application of Cryptology and Information Security on Advances in Cryptology, Kobe, Japan, 2019: 398–427. doi: 10.1007/978-3-030-34618-8_14.
    ESKANDARI Z, KIDMOSE A B, KÖLBL S, et al. Finding integral distinguishers with ease[C]. The 25th International Conference on Selected Areas in Cryptography, Calgary, Canada, 2018: 115–138. doi: 10.1007/978-3-030-10970-7_6.
    ZHANG Wenying and RIJMEN V. Division cryptanalysis of block ciphers with a binary diffusion layer[J]. IET Information Security, 2019, 13(2): 87–95. doi: 10.1049/iet-ifs.2018.5151
    徐洪, 方玉颖, 戚文峰. SIMON64算法的积分分析[J]. 电子与信息学报, 2020, 42(3): 720–728. doi: 10.11999/JEIT190230

    XU Hong, FANG Yuying, and QI Wenfeng. Integral attacks on SIMON64[J]. Journal of Electronics &Information Technology, 2020, 42(3): 720–728. doi: 10.11999/JEIT190230
    ZHANG Wenying, CAO Meichun, GUO Jian, et al. Improved security evaluation of SPN block ciphers and its applications in the single-key attack on SKINNY[J]. IACR Transactions on Symmetric Cryptology, 2020, 2019(4): 171–191. doi: 10.13154/tosc.v2019.i4.171-191
    AAGAARD M, ALTAWY R, GONG Guang, et al. ACE: An authenticated encryption and hash algorithm[EB/OL]. https://uwaterloo.ca/communications-security-lab/lwc/ace, 2020.
    Computer Security Resource Center. Lightweight cryptography[EB/OL]. https://csrc.nist.gov/Projects/lightweight-cryptography, 2020.
    BOGDANOV A and SHIBUTANI K. Generalized Feistel networks revisited[J]. Designs, Codes and Cryptography, 2013, 66(1): 75–97. doi: 10.1007/s10623-012-9660-z
    YANG Gangqiang, ZHU Bo, SUDER V, et al. The SIMECK family of lightweight block ciphers[C]. The 17th International Workshop on Cryptographic Hardware and Embedded Systems, Saint-Malo, France, 2015: 307–329. doi: 10.1007/978-3-662-48324-4_16.
  • 加载中
图(1) / 表(7)
计量
  • 文章访问数:  1694
  • HTML全文浏览量:  578
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-03
  • 修回日期:  2020-01-03
  • 网络出版日期:  2021-02-26
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回