高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时空信息融合的无人艇水面目标检测跟踪

周治国 荆朝 王秋伶 屈崇

周治国, 荆朝, 王秋伶, 屈崇. 基于时空信息融合的无人艇水面目标检测跟踪[J]. 电子与信息学报, 2021, 43(6): 1698-1705. doi: 10.11999/JEIT200223
引用本文: 周治国, 荆朝, 王秋伶, 屈崇. 基于时空信息融合的无人艇水面目标检测跟踪[J]. 电子与信息学报, 2021, 43(6): 1698-1705. doi: 10.11999/JEIT200223
Zhiguo ZHOU, Zhao JING, Qiuling WANG, Chong QU. Object Detection and Tracking of Unmanned Surface Vehicles Based on Spatial-temporal Information Fusion[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1698-1705. doi: 10.11999/JEIT200223
Citation: Zhiguo ZHOU, Zhao JING, Qiuling WANG, Chong QU. Object Detection and Tracking of Unmanned Surface Vehicles Based on Spatial-temporal Information Fusion[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1698-1705. doi: 10.11999/JEIT200223

基于时空信息融合的无人艇水面目标检测跟踪

doi: 10.11999/JEIT200223
详细信息
    作者简介:

    周治国:男,1977年生,副教授,研究方向为海上目标探测、识别理论及方法

    荆朝:男,1995年生,硕士生,研究方向为智能无人航行器信息感知与导航

    王秋伶:女,1994年生,硕士生,研究方向为智能无人航行器信息感知与导航

    屈崇:男,1980年生,高级工程师,研究方向为智能船舶

    通讯作者:

    周治国 zhiguozhou@bit.edu.cn

  • 中图分类号: TN911.73; TP391.4

Object Detection and Tracking of Unmanned Surface Vehicles Based on Spatial-temporal Information Fusion

  • 摘要: 在无人艇(USV)的导航、避障等多种任务中,目标检测与跟踪都十分重要,但水面环境复杂,存在目标尺度变化、遮挡、光照变化以及摄像头抖动等诸多问题。该文提出基于时空信息融合的无人艇水面视觉目标检测跟踪,在空间上利用深度学习检测,提取单帧深度语义特征,在时间上利用相关滤波跟踪,计算帧间方向梯度特征相关性,通过特征对比将时空信息进行融合,实现了持续稳定地对水面目标进行检测与跟踪,兼顾了实时性和鲁棒性。实验结果表明,该算法平均检测速度和精度相对较高,在检测跟踪速度为15 fps情况下,检测跟踪精确度为0.83。
  • 图  1  算法框架图

    图  2  检测算法网络结构图

    图  3  跟踪算法整体框架图

    图  4  候选框选择策略流程图

    图  5  测试数据集检测跟踪精确度及成功率

    图  6  分别使用 KCF、SSD和融合算法的检测跟踪精确度和成功率比较(视频2)

    图  7  与分别使用 KCF, SSD和融合算法的检测跟踪精确度和成功率比较(视频5)

    图  8  3种融合算法的检测跟踪结果对比

    表  1  测试数据集和检测跟踪结果(IOU@0.6)

    视频主要环境影响成功率速度(FPS)
    视频1视角、尺度变化0.8818.52
    视频2遮挡、尺度变化0.6115.01
    视频3晃动0.8016.60
    视频4晃动0.9512.50
    视频5光照0.6313.19
    下载: 导出CSV

    表  2  分别使用KCF、SSD和融合算法的结果比较(视频2)

    方法KCFSSD融合算法
    精确度0.300.490.69
    成功率0.290.450.61
    速度 (fps)19.600.7415.01
    下载: 导出CSV

    表  3  分别使用KCF, SSD和融合算法的结果比较(视频5)

    方法KCFSSD融合算法
    精确度0.970.690.94
    成功率0.250.720.95
    速度 (FPS)15.340.7713.19
    下载: 导出CSV

    表  4  单一SSD, YOLOv3, KCF, DSST和ECO的算法成功率对比(IOU@0.6)

    类别检测算法跟踪算法融合算法
    方法SSDYOLOv3KCFDSSTECOSSD+KCF
    成功率0.560.300.290.190.290.77
    速度 (fps)0.770.9015.6011.604.0115.00
    下载: 导出CSV

    表  5  SSD与KCF, DSST和ECO融合算法的成功率对比

    方法SSD+DSSTSSD+ECOSSD+KCF
    精确度0.460.710.77
    速度 (FPS)11.003.9015.00
    下载: 导出CSV
  • [1] 李寰宇, 毕笃彦, 杨源, 等. 基于深度特征表达与学习的视觉跟踪算法研究[J]. 电子与信息学报, 2015, 37(9): 2033–2039. doi: 10.11999/JEIT150031

    LI Huanyu, BI Duyan, YANG Yuan, et al. Research on visual tracking algorithm based on deep feature expression and learning[J]. Journal of Electronics &Information Technology, 2015, 37(9): 2033–2039. doi: 10.11999/JEIT150031
    [2] WANG Bo, SU Yumin, and WAN Lei. A sea-sky line detection method for unmanned surface vehicles based on gradient saliency[J]. Sensors, 2016, 16(4): 543. doi: 10.3390/s16040543
    [3] KRISTAN M, KENK V S, KOVAČIČ S, et al. Fast image-based obstacle detection from unmanned surface vehicles[J]. IEEE Transactions on Cybernetics, 2016, 46(3): 641–654. doi: 10.1109/TCYB.2015.2412251
    [4] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. International Conference on Neural Information Processing Systems, Istanbul, Turkey, 2015: 91–99.
    [5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/Cvpr.2016.91.
    [6] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. 14th European Conference on Computer Vision, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    [7] QIN Yueming and ZHANG Xiuzhi. Robust obstacle detection for unmanned surface vehicles[C]. MIPPR 2017: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications, Xiangyang, China, 2018: 10611E1–10611E6. doi: 10.1117/12.2285607.
    [8] YANG Jian, XIAO Yang, FANG Zhiwen, et al. An object detection and tracking system for unmanned surface vehicles[C]. Target and Background Signatures III, Warsaw, Poland, 2017: 104320R1–104320R8. doi: 10.1117/12.2278220.
    [9] COMANICIU D, RAMESH V, and MEER P. Real-time tracking of non-rigid objects using mean shift[C]. The 2000 IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, USA, 2000: 142–149. doi: 10.1109/CVPR.2000.854761.
    [10] LI Yongmin. On incremental and robust subspace learning[J]. Pattern Recognition, 2004, 37(7): 1509–1518. doi: 10.1016/j.patcog.2003.11.010
    [11] XUE Mei and LING Haibin. Robust visual tracking using ℓ1 minimization[C]. The 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 1436–1443. doi: 10.1109/ICCV.2009.5459292.
    [12] OZA N C. Online bagging and boosting[C]. The 2005 IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, USA, 2005: 2340–2345. doi: 10.1109/ICSMC.2005.1571498.
    [13] HARE S, SAFFARI A, and TORR P H S. Struck: Structured output tracking with kernels[C]. The 2011 International Conference on Computer Vision, Barcelona, Spain, 2011: 263–270. doi: 10.1109/ICCV.2011.6126251.
    [14] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5–32. doi: 10.1023/A:1010933404324
    [15] 侯志强, 王帅, 廖秀峰, 等. 基于样本质量估计的空间正则化自适应相关滤波视觉跟踪[J]. 电子与信息学报, 2019, 41(8): 1983–1991. doi: 10.11999/JEIT180921

    HOU Zhiqiang, WANG Shuai, LIAO Xiufeng, et al. Adaptive regularized correlation filters for visual tracking based on sample quality estimation[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1983–1991. doi: 10.11999/JEIT180921
    [16] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544–2550. doi: 10.1109/CVPR.2010.5539960.
    [17] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]. Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, 2012: 702–715. doi: 10.1007/978-3-642-33765-9_50.
    [18] LI Yang and ZHU Jianke. A scale adaptive kernel correlation filter tracker with feature integration[C]. 2014 European Conference on Computer Vision (ECCV) Workshops, Zurich, 2014: 254–265. doi: 10.1007/978-3-319-16181-5_18.
    [19] DANELLJAN M, HÄGER G, KHAN F S, et al. Accurate scale estimation for robust visual tracking[C]. British Machine Vision Conference, Nottingham, UK, 2014: 65.1–65.11. doi: 10.5244/C.28.65.
    [20] 王鹏, 孙梦宇, 王海燕, 等. 一种目标响应自适应的通道可靠性跟踪算法[J]. 电子与信息学报, 2020, 42(8): 1950–1958. doi: 10.11999/JEIT190569

    WANG Peng, SUN Mengyu, WANG Haiyan, et al. An object tracking algorithm with channel reliability and target response adaptation[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1950–1958. doi: 10.11999/JEIT190569
    [21] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. doi: 10.1109/tpami.2014.2345390
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  1679
  • HTML全文浏览量:  507
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-31
  • 修回日期:  2020-09-29
  • 网络出版日期:  2020-09-30
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回