高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变分模态分解和压缩感知的弱观测条件下雷达信号重构方法

刘方正 韩振中 曾瑞琪

刘方正, 韩振中, 曾瑞琪. 基于变分模态分解和压缩感知的弱观测条件下雷达信号重构方法[J]. 电子与信息学报, 2021, 43(6): 1644-1652. doi: 10.11999/JEIT200219
引用本文: 刘方正, 韩振中, 曾瑞琪. 基于变分模态分解和压缩感知的弱观测条件下雷达信号重构方法[J]. 电子与信息学报, 2021, 43(6): 1644-1652. doi: 10.11999/JEIT200219
Fangzheng LIU, Zhenzhong HAN, Ruiqi ZENG. Damaged Radar Signal Reconstruction Method Based on Variational Mode Decomposition and Compressed Sensing[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1644-1652. doi: 10.11999/JEIT200219
Citation: Fangzheng LIU, Zhenzhong HAN, Ruiqi ZENG. Damaged Radar Signal Reconstruction Method Based on Variational Mode Decomposition and Compressed Sensing[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1644-1652. doi: 10.11999/JEIT200219

基于变分模态分解和压缩感知的弱观测条件下雷达信号重构方法

doi: 10.11999/JEIT200219
详细信息
    作者简介:

    刘方正:男,1983年生,博士,讲师,主要研究方向为雷达通信干扰一体化波形设计与信号处理算法

    韩振中:男,1987年生,博士,讲师,主要研究方向为雷达通信干扰一体化波形设计与信号处理算法

    曾瑞琪:男,1994年生,硕士,助教,研究方向为雷达通信干扰一体化波形设计与信号处理算法

    通讯作者:

    韩振中 Taylor_han87@163.com

  • 中图分类号: TN911.7

Damaged Radar Signal Reconstruction Method Based on Variational Mode Decomposition and Compressed Sensing

  • 摘要: 针对弱观测条件下雷达信号存在数据残损的问题,该文提出一种基于变分模态分解和压缩感知(VMD-CS)的雷达信号重构方法。首先通过变分模态分解对采样数据进行降解去噪处理,其次在压缩感知框架下构造观测矩阵、稀疏表示字典矩阵,然后基于正交追踪匹配(OMP)算法重构出稀疏表示向量。在此基础上利用离散余弦稀疏矩阵重构信号,实现对残损雷达信号的数据重构。在连续丢失数据和随机丢失数据两种情况下,对实际采集的线性调频(LFM)雷达信号进行仿真实验。实验结果表明:在数据连续丢失率不高于30%或随机丢失率不高于60%的情况下,该文方法能有效重构雷达信号,在时域、频域和瞬时频率上能够准确逼近原始信号。
  • 图  1  VMD-CS雷达信号数据重构系统框图

    图  2  雷达信号VMD降噪结果

    图  3  弱观测条件下雷达信号重构方法流程图

    图  4  连续丢失数据条件下修复结果

    图  5  连续丢失数据条件下修复结果

  • [1] OSKOOI B, JULAYUSEFI M, and GOUDARZI A. GPR noise reduction based on wavelet thresholdings[J]. Arabian Journal of Geosciences, 2015, 8(5): 2937–2951. doi: 10.1007/s12517-014-1339-5
    [2] YANG Gongliu, LIU Yuanyuan, WANG Yanyong, et al. EMD interval thresholding denoising based on similarity measure to select relevant modes[J]. Signal Processing, 2015, 109: 95–109. doi: 10.1016/j.sigpro.2014.10.038
    [3] 戴前伟, 吴铠均, 张彬. 短时傅里叶变换在GPR数据解释中的应用[J]. 物探与化探, 2016, 40(6): 1227–1231.

    DAI Qianwei, WU Kaijun, and ZHANG Bin. A study of application of short-time Fourier transform to GPR data interpretation[J]. Geophysical and Geochemical Exploration, 2016, 40(6): 1227–1231.
    [4] ZHOU Zhirong, HUA Dengxin, WANG Yufeng, et al. Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique[J]. Optics and Lasers in Engineering, 2013, 51(8): 961–966. doi: 10.1016/j.optlaseng.2013.02.011
    [5] AN Xueli and YANG Junjie. Denoising of hydropower unit vibration signal based on variational mode decomposition and approximate entropy[J]. Transactions of the Institute of Measurement and Control, 2016, 38(3): 282–292. doi: 10.1177/0142331215592064
    [6] DRAGOMIRETSKIY K and ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. doi: 10.1109/TSP.2013.2288675
    [7] LIU Wei, CAO Siyuan, and WANG Zhiming. Retracted: Application of variational mode decomposition to seismic random noise reduction[J]. Journal of Geophysics and Engineering, 2017, 14(4): 888–899.
    [8] 徐帆, 常建华, 刘秉刚, 等. 基于VMD的激光雷达回波信号去噪方法研究[J]. 激光与红外, 2018, 48(11): 1443–1448.

    XU Fan, CHANG Jianhua, LIU Binggang, et al. De-noising method research for Lidar echo signal based on variational mode decomposition[J]. Laser &Infrared, 2018, 48(11): 1443–1448.
    [9] WANG Yanxue, MARKERT R, XIANG Jiawei, et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system[J]. Mechanical Systems and Signal Processing, 2015, 60/61: 243–251. doi: 10.1016/j.ymssp.2015.02.020
    [10] 许军才, 任青文, 黄临平. 基于变分模态分解的探地雷达信号分析方法[J]. 河海大学学报: 自然科学版, 2018, 46(6): 545–550.

    XU Juncai, REN Qingwen, and HUANG Linping. GPR signal analysis method based on variational mode decomposition[J]. Journal of Hohai University:Natural Sciences, 2018, 46(6): 545–550.
    [11] 王晶. 基于变分模态分解的信号去噪方法研究[D]. [硕士论文], 辽宁师范大学, 2018.

    WANG Jing. Research on signal method based on variational modal decomposition[D]. [Master dissertation], Liaoning Normal University, 2018.
    [12] 龚忠毅. 基于子带自适应稀疏表示的图像压缩感知重构[D]. [硕士论文], 中南民族大学, 2018.

    GONG Zhongyi. Image compression sensing reconstruction based on subband adaptive sparse representation[D]. [Master dissertation], South-Central Minzu University, 2018.
    [13] 齐林, 邢家柱, 陈俊鑫, 等. 基于压缩感知的心电信号稀疏采样与重构算法[J]. 东北大学学报: 自然科学版, 2019, 40(8): 1087–1092, 1098.

    QI Lin, XING Jiazhu, CHEN Junxin, et al. Sparse sampling and reconstruction algorithm of electrocardiogram signal in compressed sensing[J]. Journal of Northeastern University:Natural Science, 2019, 40(8): 1087–1092, 1098.
    [14] 雷励. 压缩感知MIMO雷达波形设计[D]. [硕士论文], 深圳大学, 2018.

    LEI Li. Compressed sensing MIMO radar waveform optimization[D]. [Master dissertation], Shenzhen University, 2018.
    [15] 蒋莹, 王冰切, 韩俊, 等. 基于分布式压缩感知的宽带欠定信号DOA估计[J]. 电子与信息学报, 2019, 41(7): 1690–1697. doi: 10.11999/JEIT180723

    JIANG Ying, WANG Bingqie, HAN Jun, et al. Underdetermined wideband DOA estimation based on distributed compressive sensing[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1690–1697. doi: 10.11999/JEIT180723
    [16] 张新鹏, 胡茑庆, 程哲, 等. 基于压缩感知的振动数据修复方法[J]. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506

    ZHANG Xinpeng, HU Niaoqing, CHENG Zhe, et al. Vibration data recovery based on compressed sensing[J]. Acta Physica Sinica, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [17] 田引黎, 杨林华, 张鹏嵩, 等. 基于半张量积压缩感知的形变数据重构在航天器结构健康监测中的应用[J]. 航天器环境工程, 2019, 36(2): 134–138.

    TIAN Yinli, YANG Linhua, ZHANG Pengsong, et al. Deformation data reconstruction based on semi-tensor compressed sensing in structural health monitoring of spacecraft[J]. Spacecraft Environment Engineering, 2019, 36(2): 134–138.
    [18] 钟蕾, 范冲. 基于压缩感知的航空影像超分辨率重建[J]. 测绘与空间地理信息, 2019, 42(7): 49–52.

    ZHONG Lei and FAN Chong. Super resolution reconstruction of aerial images based on compressed sensing[J]. Geomatics &Spatial Information Technology, 2019, 42(7): 49–52.
    [19] 孙延鹏. 超宽带雷达的压缩感知成像重建技术研究[D]. [博士论文], 东北大学, 2017.

    SUN Yanpeng. Ultra wideband radar image reconstruction technique based on compressed sensing[D]. [Ph. D dissertation], Northeastern University, 2017.
    [20] 王锋, 孙桂玲, 张健平, 等. 基于压缩感知的加速前向后向匹配追踪算法[J]. 电子与信息学报, 2016, 38(10): 2538–2545. doi: 10.11999/JEIT151422

    WANG Feng, SUN Guiling, ZHANG Jianping, et al. Acceleration forward-backward pursuit algorithm based on compressed sensing[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2538–2545. doi: 10.11999/JEIT151422
    [21] BARANIUK R G. Compressive sensing [lecture notes][J]. IEEE Signal Processing Magazine, 2007, 24(4): 118–121. doi: 10.1109/MSP.2007.4286571
  • 加载中
图(5)
计量
  • 文章访问数:  885
  • HTML全文浏览量:  313
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-27
  • 修回日期:  2021-01-30
  • 网络出版日期:  2021-03-17
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回