高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构细化的神经风格迁移

沈瑜 杨倩 陈小朋 苑玉彬 张泓国 王霖

沈瑜, 杨倩, 陈小朋, 苑玉彬, 张泓国, 王霖. 结构细化的神经风格迁移[J]. 电子与信息学报, 2021, 43(8): 2361-2369. doi: 10.11999/JEIT200211
引用本文: 沈瑜, 杨倩, 陈小朋, 苑玉彬, 张泓国, 王霖. 结构细化的神经风格迁移[J]. 电子与信息学报, 2021, 43(8): 2361-2369. doi: 10.11999/JEIT200211
Yu SHEN, Qian YANG, Xiaopeng CHEN, Yubin YUAN, Hongguo ZHANG, Lin WANG. Structural Refinement of Neural Style Transfer[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2361-2369. doi: 10.11999/JEIT200211
Citation: Yu SHEN, Qian YANG, Xiaopeng CHEN, Yubin YUAN, Hongguo ZHANG, Lin WANG. Structural Refinement of Neural Style Transfer[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2361-2369. doi: 10.11999/JEIT200211

结构细化的神经风格迁移

doi: 10.11999/JEIT200211
基金项目: 国家自然科学基金(61861025)
详细信息
    作者简介:

    沈瑜:女,1982年生,教授,硕士生导师,研究方向为深度学习、神经网络、图像处理

    杨倩:女,1995年生,硕士,研究方向为神经网络、风格迁移

    通讯作者:

    杨倩 13662175532@163.com

  • 中图分类号: TN911.73; TP391

Structural Refinement of Neural Style Transfer

Funds: The National Natural Science Foundation of China (61861025)
  • 摘要: 风格迁移过程中风格元素均匀分布在整个图像中会使风格化图像细节模糊,现有的迁移方法主要关注迁移风格的多样性,忽略了风格化图像的内容结构和细节信息。因此,该文提出结构细化的神经风格迁移方法,通过增加边缘检测网络对内容图像的轮廓边缘进行提取实现风格化图像内容结构的细化,凸显内容图像中的主要目标;通过对转换网络中的常规卷积层的较大卷积核进行替换,在具有相同的感受野的条件下,使网络模型参数更少,提升了迁移速度;通过对转换网络中的常规卷积层添加自适应归一化层,利用自适应归一化在特征通道中检测特定样式笔触产生较高的非线性同时保留内容图像的空间结构特性来细化生成图像的结构。该方法能够细化风格化图像的整体结构,使得风格化图像连贯性更好,解决了风格纹理均匀分布使得风格化图像细节模糊的问题,提高了图像风格迁移的质量。
  • 图  1  风格迁移模型

    图  2  边缘提取过程示意图

    图  3  不同深度的边缘检测图

    图  4  转换网络结构

    图  5  不同卷积核风格迁移纹理对比

    图  6  损失函数对比图

    图  7  纹理比较

    图  8  本文算法迁移效果展示

    图  9  实验结果对比

    图  10  实验结果对比

    图  11  客观评价指标

    表  1  步长和感受野参数设置

    LayerConv1_2Conv2_2Conv3_3Conv3_4Conv4_3Conv4_4Conv5_3Conv5_4
    步长1244881616
    接受域514404492100196212
    下载: 导出CSV

    表  2  在BSDS500数据集上的客观评价指标

    指标ODSOISAP
    5层融合边缘检测图0.7600.7840.800
    6层融合边缘检测图0.7740.7970.798
    7层融合边缘检测图0.7770.7880.814
    8层融合边缘检测图0.7860.8020.822
    下载: 导出CSV

    表  3  迁移网络改进前后参数量对比

    对应卷积层参数量特征图通道数步长卷积核尺寸,参数量卷积核尺寸,参数量
    Conv13219×9, 1594183682×5×5, 98406400
    Conv26423×3, 88565763×3, 8856576
    Conv312823×3, 44282883×3, 4428288
    Resblock1-Resblock51282345455223454552
    Nearest_Conv1641/23×3, 576003×3, 57600
    Nearest_Conv2321/23×3, 737283×3, 73728
    Conv4319×9, 155522×5×5, 9600
    总参数量196.30×106135.29×106
    下载: 导出CSV

    表  4  风格迁移算法运行时间比较(s)

    方法Gatys[4]Huang[6]Johnson[10]Liu[18]本文
    图像尺寸256×25615.860.0180.0150.0830.013
    512×51254.850.0650.050.1410.038
    1024×1024214.440.2750.210.370.255
    下载: 导出CSV
  • [1] KYPRIANIDIS J E, COLLOMOSSE J, WANG Tinghuai, et al. State of the “Art”: a taxonomy of artistic stylization techniques for images and video[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(5): 866–885. doi: 10.1109/TVCG.2012.160
    [2] 袁野, 贾克斌, 刘鹏宇. 基于深度卷积神经网络的多元医学信号多级上下文自编码器[J]. 电子与信息学报, 2020, 42(2): 371–378. doi: 10.11999/JEIT190135

    YUAN Ye, JIA Kebin, and LIU Pengyu. Multi-context autoencoders for multivariate medical signals based on deep convolutional neural networks[J]. Journal of Electronics &Information Technology, 2020, 42(2): 371–378. doi: 10.11999/JEIT190135
    [3] GATYS L A, ECKER A S, and BETHGE M. A neural algorithm of artistic style[J]. arXiv preprint arXiv: 1508.06576, 2015.
    [4] GATYS L A, ECKER A S, and BETHGE M. Image style transfer using convolutional neural networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 2414–2423. doi: 10.1109/cvpr.2016.265.
    [5] LUAN Fujun, PARIS S, SHECHTMAN E, et al. Deep photo style transfer[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 6997–7005. doi: 10.1109/CVPR.2017.740.
    [6] HUANG Xun and BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 1510–1519. doi: 10.1109/iccv.2017.167.
    [7] LI Chuan and WAND M. Combining Markov random fields and convolutional neural networks for image synthesis[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 2479–2486. doi: 10.1109/CVPR.2016.272.
    [8] DUMOULIN V, SHLENS J, and KUDLUR M. A learned representation for artistic style[J]. arXiv preprint arXiv: 1610.07629, 2016.
    [9] CHEN Yang, LAI Yukun, and LIU Yongjing. CartoonGAN: generative adversarial networks for photo cartoonization[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9465–9474. doi: 10.1109/CVPR.2018.00986.
    [10] JOHNSON J, ALEXANDRE A, and LI Feifei. Perceptual losses for real-time style transfer and super-resolution[C]. The 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 694–711. doi: 10.1007/978-3-319-46475-6_43.
    [11] 王鑫, 李可, 宁晨, 等. 基于深度卷积神经网络和多核学习的遥感图像分类方法[J]. 电子与信息学报, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628

    WANG Xin, LI Ke, NING Chen, et al. Remote sensing image classification method based on deep convolution neural network and multi-kernel learning[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628
    [12] CHEN Chunfu, FAN Quanfu, MALLINAR N, et al. Big-little net: an efficient multi-scale feature representation for visual and speech recognition[J]. arXiv preprint arXiv: 1807.03848, 2018.
    [13] WANG Xin, YU F, DOU Ziyi, et al. SkipNet: Learning dynamic routing in convolutional networks[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 420–436. doi: 10.1007/978-3-030-01261-8_25.
    [14] LIU Yun, CHENG Mingming, HU Xiaowei, et al. Richer convolutional features for edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1939–1946. doi: 10.1109/TPAMI.2018.2878849
    [15] XIE Saining and TU Zhuowen. Holistically-nested edge detection[J]. International Journal of Computer Vision, 2017, 125(1): 3–18. doi: 10.1007/s11263-017-1004-z
    [16] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755. doi: 10.1007/978-3-319-10602-1_48.
    [17] SAIF M M and SVETLANA K. WikiArt emotions: an annotated dataset of emotions evoked by art[C]. The 11th International Conference on Language Resources and Evaluation, Miyazaki, Japan, 2018: 1225–1238.
    [18] LIU Xiaochang, CHENG Mingming, LAI Yukun, et al. Depth-aware neural style transfer[C]. The Symposium on Non-Photorealistic Animation and Rendering, California, USA, 2017: 4. doi: 10.1145/3092919.3092924.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  1089
  • HTML全文浏览量:  653
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-25
  • 修回日期:  2021-01-30
  • 网络出版日期:  2021-07-21
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回