高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

15~23 GHz微波链路雨衰的敏感参量分析

刘西川 邹明忠 张旭光

刘西川, 邹明忠, 张旭光. 15~23 GHz微波链路雨衰的敏感参量分析[J]. 电子与信息学报, 2021, 43(7): 2007-2013. doi: 10.11999/JEIT200180
引用本文: 刘西川, 邹明忠, 张旭光. 15~23 GHz微波链路雨衰的敏感参量分析[J]. 电子与信息学报, 2021, 43(7): 2007-2013. doi: 10.11999/JEIT200180
Xichuan LIU, Mingzhong ZOU, Xuguang ZHANG. Analysis of Sensitive Parameters of 15~23 GHz Microwave Link Induced by Rain Attenuation[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2007-2013. doi: 10.11999/JEIT200180
Citation: Xichuan LIU, Mingzhong ZOU, Xuguang ZHANG. Analysis of Sensitive Parameters of 15~23 GHz Microwave Link Induced by Rain Attenuation[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2007-2013. doi: 10.11999/JEIT200180

15~23 GHz微波链路雨衰的敏感参量分析

doi: 10.11999/JEIT200180
基金项目: 国家自然科学基金(41975030, 41505135, 41475020),江苏水利科技项目(2019050)
详细信息
    作者简介:

    刘西川:男,1985年生,副教授,硕士生导师,主要研究方向为大气探测

    邹明忠:男,1974年生,高级工程师,研究方向为水文监测与保障

    张旭光:男,1980年生,工程师,研究方向为大气探测与保障

    通讯作者:

    刘西川 liuxc2012@hotmail.com

  • 中图分类号: TP722.6; P407.7

Analysis of Sensitive Parameters of 15~23 GHz Microwave Link Induced by Rain Attenuation

Funds: The National Natural Science Foundation of China (41975030, 41505135, 41475020), Jiangsu Water Resource Science and Technology Project (2019050)
  • 摘要: 为了提高微波链路雨衰特征的描述精度,拓展微波链路信号的可用参数,该文利用部署于江苏江阴地区的15 GHz, 18 GHz和23 GHz微波链路和雨量计开展同步对比观测,拟合得到3种频段的微波链路雨衰关系。提取并分析了接收信号电平的平均值、中位数、25%分位数、75%分位数、标准差、极大值和极小值等13个特征量与晴雨时刻、降雨强度之间的关系,得出结论:微波链路的信号变化和降雨强度的变化存在明显的负相关关系。实际拟合的雨衰关系与ITU-R的经验雨衰关系具有较好的一致性,但是在不同频段上均有差异;所有13个参量在有雨时刻和无雨时刻均存在一定概率的重叠,这是造成晴雨区分困难的主要原因;频率越高,信号变化受降雨的影响越显著,越有利于微波链路反演降雨。所得出的结论为提高微波链路测雨方法中的晴雨区分、参考值确定以及雨强反演的精度提供重要依据。
  • 图  1  15 GHz, 18 GHz, 23 GHz微波链路的接收信号电平和降雨强度的时序变化

    图  2  微波链路的概率密度分布及雨衰关系

    图  3  23 GHz微波链路在无雨和有雨时刻的信号直方图及正态拟合曲线

    图  4  23 GHz微波链路信号13个特征量间的相关系数

    表  1  微波信号特征量

    序号特征量公式序号特征量公式
    1中位数${m_{0.5}} = {X_{(N + 1)/2}}$7方差${S^2} = \dfrac{1}{N}\displaystyle\sum\limits_{i = 1}^N {{{({X_i} - \bar X)}^2}} $
    225%分位数${m_{0.25}} = {X_{(N + 1)/2}}$8标准差$\sigma = \sqrt {\dfrac{1}{N}\displaystyle\sum\limits_{i = 1}^N {{{({X_i} - \bar X)}^2}} } $
    375%分位数${m_{0.75}} = {X_{(N + 1)/2}}$9斜率$Sl = \dfrac{{\left( {\displaystyle\sum {t_i^2} } \right)\left( {\displaystyle\sum {{X_i}} } \right) - \left( {\displaystyle\sum {{t_i}} } \right)\left( {\displaystyle\sum {{t_i}{X_i}} } \right)}}{{N\left( {\displaystyle\sum {t_i^2} } \right) - {{\left( {\displaystyle\sum {{t_i}} } \right)}^2}}}$
    4极大值${X_{\max } } = \max ({X_1}\; {X_2}\; ··· \;{X_N})$10偏度$Sk = \dfrac{{\dfrac{1}{N}\displaystyle\sum\limits_{i = 1}^N {{{({X_i} - \bar X)}^3}} }}{{{{\left( {\dfrac{1}{N}\displaystyle\sum\limits_{i = 1}^N {{{({X_i} - \bar X)}^2}} } \right)}^{\dfrac{3}{2}}}}}$
    5极小值${X_{\min } } = \min ({X_1}\; {X_2} \;··· \; {X_N})$11峰度$Ku = \dfrac{{\dfrac{1}{N}\displaystyle\sum\limits_{i = 1}^N {{{({X_i} - \bar X)}^4}} }}{{{{\left( {\dfrac{1}{N}\displaystyle\sum\limits_{i = 1}^N {{{({X_i} - \bar X)}^2}} } \right)}^2}}}$
    6众数${X_{mo}} = L + \dfrac{{{f_b}}}{{{f_a} + {f_b}}} \cdot i$12信息熵$HU = - \displaystyle\sum\limits_{i = 1}^N {P({X_i}){{\log }_2}P({X_i})} $
    下载: 导出CSV

    表  2  微波链路信号特征量与雨强的相关系数

    序号特征量与雨强的相关系数(%)
    15 GHz18 GHz23 GHz
    1平均值–42.84–69.52–82.36
    2中位数–41.83–70.58–81.58
    325%分位数–44.24–70.14–81.52
    475%分位数–38.38–60.76–77.61
    5极大值–34.52–52.82–75.38
    6极小值–46.37–70.48–77.50
    7众数–44.35–70.78–77.08
    8方差31.5846.6627.40
    9标准差39.8858.4643.86
    10斜率12.6841.4110.62
    11偏度2.993.358.37
    12峰度5.520.660.75
    13信息熵9.143.434.23
    下载: 导出CSV
  • [1] 孙学金, 王晓蕾, 李浩, 等. 大气探测学[M]. 北京: 气象出版社, 2009: 452.

    SUN Xuejin, WANG Xiaolei, LI Hao, et al. Atmospheric Sounding[M]. Beijing: China Meteorological Press, 2009: 452.
    [2] 李海, 任嘉伟, 尚金雷. 一种基于模糊神经网络–模糊C均值聚类的双偏振气象雷达降水粒子分类方法[J]. 电子与信息学报, 2019, 41(4): 809–815. doi: 10.11999/JEIT180529

    LI Hai, REN Jiawei, and SHANG Jinlei. Hydrometeor classification method in dual-polarization weather radar based on fuzzy neural network-fuzzy C-means[J]. Journal of Electronics &Information Technology, 2019, 41(4): 809–815. doi: 10.11999/JEIT180529
    [3] 刘西川, 高太长, 刘磊, 等. 雨滴微物理特征研究及测量技术进展[J]. 地球科学进展, 2013, 28(11): 1217–1226. doi: 10.11867/j.issn.1001-8166.2013.11.1217

    LIU Xichuan, GAO Taichang, LIU Lei, et al. Advances in microphysical features and measurement techniques of raindrops[J]. Advances in Earth Science, 2013, 28(11): 1217–1226. doi: 10.11867/j.issn.1001-8166.2013.11.1217
    [4] 卢海梁, 王志强, 高超, 等. 基于被动干涉微波亮温图像的海面目标探测算法研究[J]. 电子与信息学报, 2020, 42(3): 563–572. doi: 10.11999/JEIT190256

    LU Hailiang, WANG Zhiqiang, GAO Chao, et al. Research on the detection algorithm for sea surface targets based on passive interferometric microwave images[J]. Journal of Electronics &Information Technology, 2020, 42(3): 563–572. doi: 10.11999/JEIT190256
    [5] MESSER H, ZINEVICH A, and ALPERT P. Environmental monitoring by wireless communication networks[J]. Science, 2006, 312(5774): 713. doi: 10.1126/science.1120034
    [6] 印敏, 高太长, 刘西川, 等. 微波链路测量降水研究综述[J]. 气象, 2015, 41(12): 1545–1553. doi: 10.7519/j.issn.1000-0526.2015.12.013

    YIN Min, GAO Taichang, LIU Xichuan, et al. Research on microwave link measurement of precipitation[J]. Meteorological Monthly, 2015, 41(12): 1545–1553. doi: 10.7519/j.issn.1000-0526.2015.12.013
    [7] 刘西川, 宋堃, 高太长, 等. 复杂大气条件对微波传播衰减的影响研究[J]. 电子与信息学报, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253

    LIU Xichuan, SONG Kun, GAO Taichang, et al. Research on the effect of complex atmospheric condition on microwave propagation attenuation[J]. Journal of Electronics &Information Technology, 2018, 40(1): 181–188. doi: 10.11999/JEIT170253
    [8] CHWALA C and KUNSTMANN H. Commercial microwave link networks for rainfall observation: Assessment of the current status and future challenges[J]. WIREs Water, 2019, 6(2): e1337. doi: 10.1002/wat2.1337
    [9] 刘西川, 高太长, 秦健, 等. 降雨对微波传输特性的影响分析[J]. 物理学报, 2010, 59(3): 2156–2162. doi: 10.7498/aps.59.2156

    LIU Xichuan, GAO Taichang, QIN Jian, et al. Effects analysis of rainfall on microwave transmission characteristics[J]. Acta Physica Sinica, 2010, 59(3): 2156–2162. doi: 10.7498/aps.59.2156
    [10] ITU. Specific attenuation model for rain for use in prediction methods[R]. ITU-R P. 838–3, 2005.
    [11] SHARMA P K, SHARMA D, and SINGH R K. Development of propagation model by considering different climatic conditions[J]. MAGNT Research Report, 2014, 2(6): 389–401.
    [12] 赵振维, 卢昌胜, 林乐科. 基于雨胞分布的视距链路雨衰减预报模型[J]. 电波科学学报, 2009, 24(4): 627–631. doi: 10.13443/j.cjors.2009.04.014

    ZHAO Zhenwei, LU Changsheng, and LIN Leke. Prediction model of rain attenuation based on the EXCELL rain cell model for the terrestrial line-of-sight systems[J]. Chinese Journal of Radio Science, 2009, 24(4): 627–631. doi: 10.13443/j.cjors.2009.04.014
    [13] 宋博, 王红星, 刘敏, 等. 雨滴谱模型对雨衰减计算的适用性分析[J]. 激光与红外, 2012, 42(3): 310–313. doi: 10.3969/j.issn.1001-5078.2012.03.015

    SONG Bo, WANG Hongxing, LIU Min, et al. Raindrop size distribution model for applicability analysis of rain attenuation[J]. Laser &Infrared, 2012, 42(3): 310–313. doi: 10.3969/j.issn.1001-5078.2012.03.015
    [14] ITU. Propagation data and prediction methods required for the design of earth-space telecommunication systems[R]. ITU-R P. 618–1, 1996.
    [15] 杨瑞科. 对流层地—空路径电磁(光)波传播的若干问题研究[D]. [博士论文], 西安电子科技大学, 2003: 1–150.

    YANG Ruike. Research on several electromagnetic (optical) wave propagation problems on Earth-space path in troposphere atmosphere[D]. [Ph. D. dissertation], Xidian University, 2003: 1–150.
    [16] 申弢, 黄树红, 韩守木, 等. 旋转机械振动信号的信息熵特征[J]. 机械工程学报, 2001, 37(6): 94–98. doi: 10.3321/j.issn:0577-6686.2001.06.021

    SHEN Tao, HUANG Shuhong, HAN Shoumu, et al. Extracting information entropy features for rotating machinery vibration signals[J]. Journal of Mechanical Engineering, 2001, 37(6): 94–98. doi: 10.3321/j.issn:0577-6686.2001.06.021
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1012
  • HTML全文浏览量:  611
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-20
  • 修回日期:  2020-10-14
  • 网络出版日期:  2020-12-11
  • 刊出日期:  2021-07-10

目录

    /

    返回文章
    返回