高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于施密特正交化的降噪多载波相关延迟键控混沌通信系统

张刚 和华杰 张鹏

张刚, 和华杰, 张鹏. 基于施密特正交化的降噪多载波相关延迟键控混沌通信系统[J]. 电子与信息学报, 2021, 43(7): 1930-1938. doi: 10.11999/JEIT200165
引用本文: 张刚, 和华杰, 张鹏. 基于施密特正交化的降噪多载波相关延迟键控混沌通信系统[J]. 电子与信息学报, 2021, 43(7): 1930-1938. doi: 10.11999/JEIT200165
Gang ZHANG, Huajie HE, Peng ZHANG. NR-MC-CDSK Chaotic Communication System Based on Schmidt Orthogonalization[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1930-1938. doi: 10.11999/JEIT200165
Citation: Gang ZHANG, Huajie HE, Peng ZHANG. NR-MC-CDSK Chaotic Communication System Based on Schmidt Orthogonalization[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1930-1938. doi: 10.11999/JEIT200165

基于施密特正交化的降噪多载波相关延迟键控混沌通信系统

doi: 10.11999/JEIT200165
基金项目: 国家自然科学基金(61771085),重庆市教育委员会科研项目(KJ1600407, KJQN201900601)
详细信息
    作者简介:

    张刚:男,1976年生,博士,教授,主要研究方向为混沌同步、混沌保密通信

    和华杰:男,1995年生,硕士生,研究方向为混沌保密通信

    张鹏:男,1980年生,硕士,高级工程师,主要研究方向为智能科学、保密通信

    通讯作者:

    和华杰 641798020@qq.com

  • 中图分类号: TN911.3

NR-MC-CDSK Chaotic Communication System Based on Schmidt Orthogonalization

Funds: The National Natural Science Foundation of China (61771085), The Research Project of Chongqing Educational Commission (KJ1600407, KJQN201900601)
  • 摘要: 为解决传统相关延迟键控(CDSK)混沌通信系统存在的误码(BER)性能差的问题,该文提出一种基于施密特正交化的降噪多载波相关延迟键控(NR-MC-CDSK)混沌通信系统。在发送端,利用施密特正交化算法产生N组完全正交的混沌载波,并复制P次作为参考信号,与N个信息信号叠加进行传输,并利用多载波技术,复用每帧信号传输MN个用户信息。在接收端,将信号经匹配滤波器解调,然后通过滑动平均滤波器降噪,并进行相关解调。推导了系统在加性高斯白噪声(AWGN)信道和多径Rayleigh衰落信道中的BER公式并进行了仿真分析,结果表明系统的BER性能优于众多多载波混沌通信系统,数据传输速率也相较CDSK系统有明显提升,为该系统在实际通信系统中的应用提供了理论依据,并显示了较强的应用价值。
  • 图  1  NR-MC-CDSK系统发送端框图

    图  2  NR-MC-CDSK系统的功率谱密度

    图  3  多径Rayleigh衰落信道模型

    图  4  NR-MC-CDSK系统接收端框图

    图  5  滑动平均滤波器结构

    图  6  AWGN信道下,系统有无施密特正交化的BER性能对比图

    图  7  AWGN信道下,系统BER随$\beta $的变化曲线

    图  8  每组用户数$N$与系统BER性能的关系曲线图

    图  9  组数$M$与系统BER性能的关系曲线图

    图  10  处于不同复制次数$P$的系统BER性能与其他系统比较的曲线图

  • [1] LI Ning, MARTÍNEZ-ORTEGA J F, DÍAZ V H, et al. A new high-efficiency multilevel frequency-modulation different chaos shift keying communication system[J]. IEEE Systems Journal, 2018, 12(4): 3334–3345. doi: 10.1109/jsyst.2017.2715661
    [2] ZHANG Bangquan, XU Weikai, WU Yunfeng, et al. Design and performance analysis of multilevel code-shifted M -ary differential chaos shift keying system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(7): 1257–1261. doi: 10.1109/TCSII.2018.2880779
    [3] CHEND Guixian, WANG Lin, XU Weikai, et al. Carrier index differential chaos shift keying modulation[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(8): 907–911. doi: 10.1109/TCSII.2016.2613093
    [4] 曹学鹏, 吕毅博, 黄婷婷, 等. 不同混沌调制方式在基于超宽带系统的体内信道下的性能表现[J]. 重庆邮电大学学报: 自然科学版, 2016, 28(1): 72–77. doi: 10.3979/j.issn.1673-825X.2016.01.011

    CAO Xuepeng, LÜ Yibo, HUANG Tingting, et al. Performance of different DCSK schemes over the UWB in-body channel[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2016, 28(1): 72–77. doi: 10.3979/j.issn.1673-825X.2016.01.011
    [5] 张刚, 赵畅畅, 张天骐. 短参考正交多用户差分混沌键控方案的性能分析[J]. 电子与信息学报, 2019, 41(9): 2055–2062. doi: 10.11999/JEIT181038

    ZHANG Gang, ZHAO Changchang, and ZHANG Tianqi. Performance analysis of short reference orthogonal multiuser differential chaotic shift keying scheme[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2055–2062. doi: 10.11999/JEIT181038
    [6] 贺利芳, 陈俊, 张天骐. 短参考多用户差分混沌移位键控通信系统性能分析[J]. 电子与信息学报, 2020, 42(8): 1902–1909. doi: 10.11999/JEIT190117

    HE Lifang, CHEN Jun, and ZHANG Tianqi. Performance analysis of short reference multi-user differential chaos shift keying communication system[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1902–1909. doi: 10.11999/JEIT190117
    [7] MIN X, XU W, WANG L, et al. Promising performance of a frequency-modulated differential chaos shift keying ultra-wideband system under indoor environments[J]. IET Communications, 2010, 4(2): 125–134. doi: 10.1049/iet-com.2008.0658
    [8] KOLUMBAN G. UWB technology: Chaotic communications versus noncoherent impulse radio[C]. The 2005 European Conference on Circuit Theory and Design, 2005, Cork, Ireland, 2005: II/79-II/82. doi: 10.1109/ECCTD.2005.1522997.
    [9] HERCEG M, KADDOUM G, VRANJEŠ D, et al. Permutation index DCSK modulation technique for secure multiuser high-data-rate communication systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 2997–3011. doi: 10.1109/TVT.2017.2774108
    [10] KADDOUM G, SOUJERI E, and NIJSURE Y. Design of a short reference noncoherent chaos-based communication systems[J]. IEEE Transactions on Communications, 2016, 64(2): 680–689. doi: 10.1109/TCOMM.2015.2514089
    [11] KOLUMBAN G, VIZVARI B, SCHWARZ W, et al. Differential chaos shift keying: A robust coding for chaos communication[C]. The 4th International Workshop on Nonlinear Dynamics of Electronic Systems, Seville, Spain, 1996: 87–92.
    [12] YANG Hua, TANG W K S, CHEN Guanrong, et al. System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(1): 146–156. doi: 10.1109/TCSI.2015.2510622
    [13] KADDOUM G. Design and performance analysis of a multiuser OFDM based differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2016, 64(1): 249–260. doi: 10.1109/TCOMM.2015.2502259
    [14] KADDOUM G and GAGNON F. Performance analysis of STBC-CSK communication system over slow fading channel[J]. Signal Processing, 2013, 93(7): 2055–2060. doi: 10.1016/j.sigpro.2012.12.020
    [15] QUYEN N X, DUONG T Q, and NALLANATHAN A. Modelling, analysis and performance comparison of two direct sampling DCSK receivers under frequency non-selective fading channels[J]. IET Communications, 2016, 10(11): 1263–1272. doi: 10.1049/iet-com.2015.1103
    [16] 张刚, 徐联冰, 张天骐. 无信号内干扰的MAMU-CDSK混沌通信系统[J]. 系统工程与电子技术, 2019, 41(4): 906–913. doi: 10.3969/j.issn.1001-506X.2019.04.29

    ZHANG Gang, XU Lianbing, and ZHANG Tianqi. MAMU-CDSK chaotic communication system with no intra-signal interference[J]. Systems Engineering and Electronics, 2019, 41(4): 906–913. doi: 10.3969/j.issn.1001-506X.2019.04.29
    [17] KADDOUM G, RICHARDSON F D, and GAGNON F. Design and analysis of a multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2013, 61(8): 3281–3291. doi: 10.1109/TCOMM.2013.071013.130225
    [18] YANG Hua, JIANG Guoping, TANG W K S, et al. Multi-carrier differential chaos shift keying system with subcarriers allocation for noise reduction[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(11): 1733–1737. doi: 10.1109/TCSII.2017.2752754
    [19] QUYEN N X and PHAM C K. Quadrature multi-carrier DCSK: A high-efficiency scheme for radio communications[C]. 2017 International Conference on Advanced Technologies for Communications, Quy Nhon, Vietnam, 2017: 186–191. doi: 10.1109/ATC.2017.8167614.
    [20] YANG Hua, TANG W K S, CHEN Guanrong, et al. Multi-carrier chaos shift keying: System design and performance analysis[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64(8): 2182–2194. doi: 10.1109/TCSI.2017.2685344
    [21] VENKATESH S and SINGH P. Performance analysis of OCV based non coherent MA chaotic communication system with adaptive multi user receivers[C]. 2011 International Conference on Devices and Communications (ICDeCom), Mesra, India, 2011: 1–5. doi: 10.1109/ICDECOM.2011.5738462.
  • 加载中
图(10)
计量
  • 文章访问数:  1036
  • HTML全文浏览量:  331
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 修回日期:  2020-12-01
  • 网络出版日期:  2020-12-18
  • 刊出日期:  2021-07-10

目录

    /

    返回文章
    返回