高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Blob-Harris特征区域和NSCT-Zernike的鲁棒水印算法

张天骐 周琳 梁先明 徐伟

张天骐, 周琳, 梁先明, 徐伟. 基于Blob-Harris特征区域和NSCT-Zernike的鲁棒水印算法[J]. 电子与信息学报, 2021, 43(7): 2038-2045. doi: 10.11999/JEIT200164
引用本文: 张天骐, 周琳, 梁先明, 徐伟. 基于Blob-Harris特征区域和NSCT-Zernike的鲁棒水印算法[J]. 电子与信息学报, 2021, 43(7): 2038-2045. doi: 10.11999/JEIT200164
Tianqi ZHANG, Lin ZHOU, Xianming LIANG, Wei XU. A Robust Watermarking Algorithm Based on Blob-Harris and NSCT-Zernike[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2038-2045. doi: 10.11999/JEIT200164
Citation: Tianqi ZHANG, Lin ZHOU, Xianming LIANG, Wei XU. A Robust Watermarking Algorithm Based on Blob-Harris and NSCT-Zernike[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2038-2045. doi: 10.11999/JEIT200164

基于Blob-Harris特征区域和NSCT-Zernike的鲁棒水印算法

doi: 10.11999/JEIT200164
基金项目: 国家自然科学基金(61701067, 61771085, 61671095, 61702065);信号与信息处理重庆市市级重点实验室建设项目(CSTC2009CA2003);重庆市研究生科研创新项目(CYS19248);重庆市教育委员会科研项目(KJ1600427, KJ1600429)
详细信息
    作者简介:

    张天骐:男,1971年生,博士后,教授,主要研究方向为语音信号处理、通信信号的调制解调、盲处理、神经网络实现以及FPGA,VLSI实现

    周琳:女,1995年生,硕士生,研究方向为图像与信号处理、图像水印

    梁先明:男,1976年生,工程师,研究方向为通信侦查领域信号处理及信号分析等

    徐伟:男,1993年生,硕士生,研究方向为通信信号处理等

    通讯作者:

    周琳 614254097@qq.com

  • 中图分类号: TN911.73

A Robust Watermarking Algorithm Based on Blob-Harris and NSCT-Zernike

Funds: The National Natural Science Foundation of China (61701067, 61771085, 61671095, 61702065), The Project of Key Laboratory of Signal and Information Processing of Chongqing (CSTC2009CA2003), The Chongqing Graduate Research and Innovation Project (CYS19248), The Research Project of Chongqing Educational Commission(KJ1600427, KJ1600429)
  • 摘要: 为了有效抵抗水印图像的几何攻击,该文提出了一种基于Blob-Harris特征区域和非下采样轮廓波变换(NSCT)和伪Zernike矩的鲁棒水印算法。首先原始图像进行两层非下采样Contourlet变换后提取其低频图像,然后利用Blob-Harris检测算子对低频图像进行特征点提取,根据各个特征点的特征尺度确定其特征区域,优化筛选出稳定且互不重叠的特征区域并将其四周补零,得到稳定的互不重叠的方形特征区域作为水印嵌入区域,最后计算每一个方形特征区域的Zernike矩,将水印信息嵌入在量化调制正则化Zernike矩的幅值当中。实验结果表明,Lena图峰值信噪比达到40 dB以上时,本文算法对常规图像处理以及缩放、旋转、剪切等几何攻击和组合攻击都有相对较强的鲁棒性。
  • 图  1  不同尺度$\sigma $下的尺度空间

    图  2  选取特征区域

    图  3  水印嵌入区域的形成

    图  4  水印嵌入和检测流程图

    图  5  水印嵌入效果

    图  6  本文算法与文献[10]的鲁棒性能对比

    表  1  算法对一些常规信号的抵抗能力

    攻击方式强度RCDREDNCmax
    LPBLPBLPB
    JPEG压缩9014/1714/189/133/174/184/130.8600.8530.835
    5014/1713/188/133/175/185/130.8040.8140.800
    高斯白噪声0.00815/1715/189/132/173/184/130.9170.9060.894
    0.0113/1714/188/134/174/185/130.8790.8870.856
    椒盐噪声0.00114/1714/189/133/174/184/130.8470.8300.821
    椒盐噪声0.0214/1713/188/133/175/185/130.8590.8450.804
    高斯滤波(4×4)13/1713/1810/134/175/183/130.8190.8170.803
    中值滤波(3×3)15/1714/188/132/174/185/130.9060.8950.800
    增亮(0.4, 1)14/1713/188/133/175/185/130.8320.8230.804
    下载: 导出CSV

    表  2  算法对一些几何攻击的抵抗能力

    攻击方式强度RCDREDNCmax
    LPBLPBLPB
    缩放0.914/1714/189/133/174/184/130.8950.8970.886
    缩放214/1714/188/133/174/185/130.9060.8900.885
    旋转50°12/1712/189/135/176/184/130.8240.8040.804
    旋转90°13/1712/189/134/176/184/130.8230.8130.824
    平移(–40, 50)11/1712/188/136/176/185/130.7930.8000.793
    移除行列(1, 5)12/1712/188/135/176/185/130.8200.8000.800
    边缘剪切10%12/1713/1810/135/175/183/130.8600.8430.830
    边缘剪切50%11/1711/189/136/177/184/130.8320.8350.804
    中心剪切25%12/1711/189/135/177/184/130.8240.8260.778
    缩放+旋转0.8+10°14/1713/189/133/175/184/130.8450.8170.809
    缩放+剪切1.3+5%13/1712/188/134/176/185/130.8890.8520.833
    下载: 导出CSV

    表  3  本文算法与文献[17]的NC值对比(%)

    攻击方式攻击强度本文算法文献[17]
    LBLB
    JPEG压缩909289.594.291
    JPEG压缩4084.483.58381.9
    中值滤波3×392.58586.285
    中值滤波7×791.282.381.280.4
    高斯白噪声0.284.2809089.7
    高斯低通滤波5×583.3838180
    高斯低通滤波7×781.580.979.377.9
    缩放0.891.688.983.579.3
    缩放1.8929084.481.5
    旋转89.587.286.580
    旋转60°84.685.179.575.2
    边缘剪切10%88.285.59088.9
    边缘剪切50%8784.98583.2
    中心剪切10%8982.68888
    移除行列(5,17)81.5808483
    中值滤波+ JPEG(2×2)+9090.586.483.582
    高斯低通+ JPEG(3×3)+9086.584.586.384.1
    中心剪切+ JPEG5%+7086.581.586.385.2
    移除行列+ JPEG(5, 17)+7081.579.381.581
    旋转+缩放+ JPEG30°+0.9+7086.984.579.776.5
    旋转+剪切+ JPEG5°+5%+708380.381.380
    下载: 导出CSV
  • [1] 肖迪, 邓秘密, 张玉书. 基于压缩感知的鲁棒可分离的密文域水印算法[J]. 电子与信息学报, 2015, 37(5): 1248–1254. doi: 10.11999/JEIT141017

    XIAO Di, DENG Mimi, and ZHANG Yushu. Robust and separable watermarking algorithm in encrypted image based on compressive sensing[J]. Journal of Electronics &Information Technology, 2015, 37(5): 1248–1254. doi: 10.11999/JEIT141017
    [2] YANG Kunyu, WANG Weiwei, YUAN Zhihua, et al. Strong robust zero watermarking algorithm based on NSCT transform and image normalization[C]. The 3rd Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 2018: 236–240. doi: 10.1109/IAEAC.2018.8577943.
    [3] LI Yuancheng and WANG Xiaolei. A watermarking method combined with Radon transform and 2D-wavelet transform[C]. The 7th World Congress on Intelligent Control and Automation, Chongqing, China, 2008: 4586–4590. doi: 10.1109/WCICA.2008.4593662.
    [4] SANTHI V and ARULMOZHIVARMAN P. Hadamard transform based adaptive visible/invisible watermarking scheme for digital images[J]. Journal of Information Security and Applications, 2013, 18(4): 167–179. doi: 10.1016/j.istr.2013.01.001
    [5] ABDELHAKIM A M, SAAD M H, SAYED M, et al. Optimized SVD-based robust watermarking in the fractional Fourier domain[J]. Multimedia Tools and Applications, 2018, 77(21): 27895–27917. doi: 10.1007/s11042-018-6014-5
    [6] SOUNDES B, LARBI G, and SAMIR Z. Pseudo Zernike moments-based approach for text detection and localisation from lecture videos[J]. International Journal of Computational Science and Engineering, 2019, 19(2): 274–283. doi: 10.1504/ijcse.2016.10011674
    [7] SINGH C and RANADE S K. Image adaptive and high-capacity watermarking system using accurate Zernike moments[J]. IET Image Processing, 2014, 8(7): 373–382. doi: 10.1049/iet-ipr.2013.0382
    [8] ISLAM M and LASKAR R H. Geometric distortion correction based robust watermarking scheme in LWT-SVD domain with digital watermark extraction using SVM[J]. Multimedia Tools and Applications, 2018, 77(11): 14407–14434. doi: 10.1007/s11042-017-5035-9
    [9] ZHU Dandan and LÜ Lizhi. A new image watermarking algorithm using the contourlet transform and the Harris detector[C]. CCF Chinese Conference on Computer Vision, Xi'an, China, 2015: 439–447. doi: 10.1007/978-3-662-48570-5_42.
    [10] HUNG K L and YEN C Y. Watermarking technique based on Harris-Laplace feature point detector capable of resisting geometric attacks[C]. The 14th Asia Joint Conference on Information Security, Kobe, Japan, 2019: 119–126. doi: 10.1109/AsiaJCIS.2019.00007.
    [11] KUMAR P and SHARMA A K. Optimized features of SIFT transform function for digital image watermarking using hybrid swarm intelligence and neural network[J]. International Journal of Recent Technology and Engineering, 2019, 8(3): 2179–2190. doi: 10.35940/ijrte.C4584.098319
    [12] SINGH K M. A robust rotation resilient video watermarking scheme based on the SIFT[J]. Multimedia Tools and Applications, 2018, 77(13): 16419–16444. doi: 10.1007/s11042-017-5213-9
    [13] FENG Liu, GONG Daofu, LIU Fenlin, et al. Affine invariant image watermarking scheme based on ASIFT and Delaunay tessellation[J]. Multimedia Tools and Applications, 2019, 78(7): 8133–8149. doi: 10.1007/s11042-018-6717-7
    [14] WANG Wei, LI Wenhui, WANG Chengxi, et al. A novel watermarking algorithm based on SURF and SVD[J]. Applied Mechanics and Materials, 2013, 303–306: 2117–2121. doi: 10.4028/www.scientific.net/AMM.303-306.2117
    [15] 张秋余, 孙媛, 晏燕. 基于分块自适应压缩感知的可逆水印算法[J]. 电子与信息学报, 2013, 35(4): 797–804. doi: 10.3724/SP.J.1146.2012.00914

    ZHANG Qiuyu, SUN Yuan, and YAN Yan. A reversible watermarking algorithm based on block adaptive compressed sensing[J]. Journal of Electronics &Information Technology, 2013, 35(4): 797–804. doi: 10.3724/SP.J.1146.2012.00914
    [16] 楼偶俊. 基于Contourlet域特征点的抗几何攻击水印方法[J]. 计算机研究与发展, 2010, 47(1): 113–120.

    LOU Oujun. Feature point based image watermarking scheme in Contourlet domain against geometrical attacks[J]. Journal of Computer Research and Development, 2010, 47(1): 113–120.
    [17] NIU Panpan, WANG Li, SHEN Xin, et al. A novel robust image watermarking in quaternion wavelet domain based on superpixel segmentation[J]. Multidimensional Systems and Signal Processing, 2020, 31(4): 1509–1530. doi: 10.1007/s11045-020-00718-z
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1033
  • HTML全文浏览量:  412
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 修回日期:  2020-11-30
  • 网络出版日期:  2020-12-05
  • 刊出日期:  2021-07-10

目录

    /

    返回文章
    返回