高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度圆周频率滤波与卷积神经网络的遥感图像飞机目标检测方法研究

杨钧智 吴金亮 智军

杨钧智, 吴金亮, 智军. 基于多尺度圆周频率滤波与卷积神经网络的遥感图像飞机目标检测方法研究[J]. 电子与信息学报, 2021, 43(5): 1397-1404. doi: 10.11999/JEIT200144
引用本文: 杨钧智, 吴金亮, 智军. 基于多尺度圆周频率滤波与卷积神经网络的遥感图像飞机目标检测方法研究[J]. 电子与信息学报, 2021, 43(5): 1397-1404. doi: 10.11999/JEIT200144
Junzhi YANG, Jinliang WU, Jun ZHI. Aircraft Target Detection in Remote Sensing Image Based on Multi-scale Circle Frequency Filter and Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1397-1404. doi: 10.11999/JEIT200144
Citation: Junzhi YANG, Jinliang WU, Jun ZHI. Aircraft Target Detection in Remote Sensing Image Based on Multi-scale Circle Frequency Filter and Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1397-1404. doi: 10.11999/JEIT200144

基于多尺度圆周频率滤波与卷积神经网络的遥感图像飞机目标检测方法研究

doi: 10.11999/JEIT200144
详细信息
    作者简介:

    杨钧智:男,1978年生,副研究员,博士,研究方向为遥感影像处理、遥感影像目标检测与识别

    吴金亮:男,1984年生,高级工程师,博士,研究方向为遥感影像处理、数据分析和智能处理

    智军:男,1983年生,助理研究员,博士,研究方向为智能计算方法、遥感影像处理

    通讯作者:

    杨钧智 jzh_1st@163.com

  • 中图分类号: TN911.73; TP391.4

Aircraft Target Detection in Remote Sensing Image Based on Multi-scale Circle Frequency Filter and Convolutional Neural Network

  • 摘要: 针对遥感图像飞机目标检测因目标尺度不一存在漏警、虚警等问题,该文基于遥感图像中飞机目标形状特征和灰度变化特点提出了一种多尺度圆周频率滤波(MSCFF)与卷积神经网络(CNN)相结合的MSCFF+CNN飞机目标自动检测算法。该算法首先采用多尺度圆周频率滤波器滤除遥感图像复杂背景,实现不同尺度飞机目标候选区域提取;然后,通过构建卷积神经网络(CNN)模型实现候选区域有效分类,最终精确确定飞机目标位置。最后,基于获取的真实遥感图像进行目标检测算法实验验证,经统计该算法的飞机目标检测率为94.38%,虚警率为3.76%,实验结果充分验证了该文算法的有效性,该算法可为机场监管、军事侦察等应用提供重要的技术支持。
  • 图  1  采样圆周像素灰度变化

    图  2  圆周频率滤波响应图像

    图  3  飞机候选区域定位总体方案

    图  4  基于传统圆周频率滤波响应的飞机候选区域定位结果

    图  5  基于多尺度圆周频率滤波响应的飞机候选区域定位结果

    图  6  卷积神经网络结构和参数

    图  7  部分数据集

    图  8  部分遥感图像检测结果

    图  9  不同尺度遥感图像飞机目标检测各步骤结果

    表  1  与传统圆周频率滤波算法比较

    方法检测率(%)虚警率(%)平均速度(s)
    CFF+CNN90.114.320.73
    MSCFF+CNN94.383.761.33
    下载: 导出CSV
  • [1] AN Zhenyu, SHI Zhenwei, TENG Xichao, et al. An automated airplane detection system for large panchromatic image with high spatial resolution[J]. Optik, 2014, 125(12): 2768–2775. doi: 10.1016/j.ijleo.2013.12.003
    [2] LIU Liu and SHI Zhenwei. Airplane detection based on rotation invariant and sparse coding in remote sensing images[J]. Optik, 2014, 125(18): 5327–5333. doi: 10.1016/j.ijleo.2014.06.062
    [3] WU Hui, ZHANG Hui, ZHANG Jinfang, et al. Fast aircraft detection in satellite images based on convolutional neural networks[C]. 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, Canada, 2015: 4210–4214. doi: 10.1109/ICIP.2015.7351599.
    [4] YU Yongtao, GUAN Haiyan, ZAI Dawei, et al. Rotation-and-scale-invariant airplane detection in high-resolution satellite images based on deep-Hough-forests[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 112: 50–64. doi: 10.1016/j.isprsjprs.2015.04.014
    [5] LUO Qinhan and SHI Zhenwei. Airplane detection in remote sensing images based on object proposal[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 1388–1391. doi: 10.1109/IGARSS.2016.7729355.
    [6] LI Bangyu, CUI Xiaoguang, and BAI Jun. A cascade structure of aircraft detection in high resolution remote sensing images[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 653–656. doi: 10.1109/IGARSS.2016.7729164.
    [7] DIAO Wenhui, SUN Xian, ZHENG Xinwei, et al. Efficient saliency-based object detection in remote sensing images using deep belief networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 137–141. doi: 10.1109/LGRS.2015.2498644
    [8] ZHU Mingming, XU Yuelei, MA Shiping, et al. Effective airplane detection in remote sensing images based on multilayer feature fusion and improved nonmaximal suppression algorithm[J]. Remote Sensing, 2019, 11(9): 1062. doi: 10.3390/rs11091062
    [9] REN Shaoqing, HE Kaiming, GIRSHICK S, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [10] 李淑敏, 冯权泷, 梁其椿, 等. 基于深度学习的国产高分遥感影像飞机目标自动检测[J]. 遥感技术与应用, 2018, 33(6): 1095–1102. doi: 10.11873/j.issn.1004-0323.2018.6.1095

    LI Shumin, FENG Quanlong, LIANG Qichun, et al. Aircraft auto-detection in domestic high resolution remote sensing-images using deep-learning[J]. Remote Sensing Technology and Application, 2018, 33(6): 1095–1102. doi: 10.11873/j.issn.1004-0323.2018.6.1095
    [11] 戴伟聪, 金龙旭, 李国宁, 等. 遥感图像中飞机的改进YOLOv3实时检测算法[J]. 光电工程, 2018, 45(12): 180350. doi: 10.12086/oee.2018.180350

    DAI Weicong, JIN Longxu, LI Guoning, et al. Real-time airplane detection algorithm in remote-sensing images based on improved YOLOv3[J]. Opto-Electronic Engineering, 2018, 45(12): 180350. doi: 10.12086/oee.2018.180350
    [12] 宋萍, 许光銮, 周沿海, 等. 基于MRNSSD模型的遥感图像中飞机目标检测方法[J]. 计算机与现代化, 2018(12): 110–115. doi: 10.3969/j.issn.1006-2475.2018.12.021

    SONG Ping, XU Guangluan, ZHOU Yanhai, et al. Aircraft detection method based on MRNSSD model for remote sensing images[J]. Computer and Modernization, 2018(12): 110–115. doi: 10.3969/j.issn.1006-2475.2018.12.021
    [13] 余春艳, 徐小丹, 钟诗俊. 面向显著性目标检测的SSD改进模型[J]. 电子与信息学报, 2018, 40(11): 2554–2561. doi: 10.11999/JEIT180118

    YU Chunyan, XU Xiaodan, and ZHONG Shijun. An improved SSD model for saliency object detection[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2554–2561. doi: 10.11999/JEIT180118
    [14] CHEN Zhong, ZHANG Ting, and OUYANG Chao. End-to-end airplane detection using transfer learning in remote sensing images[J]. Remote Sensing, 2018, 10(1): 139. doi: 10.3390/rs10010139
    [15] 唐玮, 赵保军, 龙腾. 基于轻量化网络的光学遥感图像飞机目标检测[J]. 信号处理, 2019, 35(5): 768–774. doi: 10.16798/j.issn.1003-0530.2019.05.005

    TANG Wei, ZHAO Baojun, and LONG Teng. Aircraft detection in remote sensing image based on lightweight network[J]. Journal of Signal Processing, 2019, 35(5): 768–774. doi: 10.16798/j.issn.1003-0530.2019.05.005
    [16] 郭智, 宋萍, 张义, 等. 基于深度卷积神经网络的遥感图像飞机目标检测方法[J]. 电子与信息学报, 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117

    GUO Zhi, SONG Ping, ZHANG Yi, et al. Aircraft detection method based on deep convolutional neural network for remote sensing images[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117
    [17] 王鑫, 李可, 宁晨, 等. 基于深度卷积神经网络和多核学习的遥感图像分类方法[J]. 电子与信息学报, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628

    WANG Xin, LI Ke, NING Chen, et al. Remote sensing image classification method based on deep convolution neural network and multi-kernel learning[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628
    [18] 罗会兰, 卢飞, 孔繁胜. 基于区域与深度残差网络的图像语义分割[J]. 电子与信息学报, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056

    LUO Huilan, LU Fei, and KONG Fansheng. Image semantic segmentation based on region and deep residual network[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1511
  • HTML全文浏览量:  743
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-03
  • 修回日期:  2020-10-14
  • 网络出版日期:  2020-10-16
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回