高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运动平台混响背景下基于低秩稀疏分解的目标回波增强

王燕 贺玉梁 邱龙皓 邹男

王燕, 贺玉梁, 邱龙皓, 邹男. 运动平台混响背景下基于低秩稀疏分解的目标回波增强[J]. 电子与信息学报, 2021, 43(7): 1978-1984. doi: 10.11999/JEIT200143
引用本文: 王燕, 贺玉梁, 邱龙皓, 邹男. 运动平台混响背景下基于低秩稀疏分解的目标回波增强[J]. 电子与信息学报, 2021, 43(7): 1978-1984. doi: 10.11999/JEIT200143
Yan WANG, Yuliang HE, Longhao QIU, Nan ZOU. Target Echo Enhancement under Moving Platform Reverberation Using Low-Rank and Sparse Decomposition[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1978-1984. doi: 10.11999/JEIT200143
Citation: Yan WANG, Yuliang HE, Longhao QIU, Nan ZOU. Target Echo Enhancement under Moving Platform Reverberation Using Low-Rank and Sparse Decomposition[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1978-1984. doi: 10.11999/JEIT200143

运动平台混响背景下基于低秩稀疏分解的目标回波增强

doi: 10.11999/JEIT200143
基金项目: 国家重点研发计划(2017YFC0306900),国防基础科研(JCKY2019604B001)
详细信息
    作者简介:

    王燕:女,1973年生,教授,博士生导师,研究方向为水声信号处理、水下声信号被动探测等

    贺玉梁:男,1990年生,博士生,研究方向为阵列信号处理、水下目标主动探测等

    邱龙皓:男,1988年生,博士生,研究方向为水声信号处理、水下目标被动探测等

    邹男:女,1986年生,讲师,硕士生导师,研究方向为水声信号处理、水下目标被动探测等

    通讯作者:

    邱龙皓 qiulonghao@hrbeu.edu.cn

  • 中图分类号: TN929.3

Target Echo Enhancement under Moving Platform Reverberation Using Low-Rank and Sparse Decomposition

Funds: The National Key R&D Plan (2017YFC0306900), The National Defense Basic Scientific Research (JCKY2019604B001)
  • 摘要: 在水下航行器等运动平台上,主动声呐的近距离滤波结果受混响干扰影响严重,大量的混响回波亮点会掩蔽目标回波的可见性,导致后续检测判决的虚警率增大。以阵列处理的方位历程图作为基本输入,该文利用某些场景下混响干扰相邻周期间潜在的相干结构,假设混响满足低秩性;由于平台间的相对运动,假设感兴趣的目标回波在逐周期间是不相关且稀疏的。之后,将方位历程图表示为低秩的混响、稀疏的运动目标回波和噪声成分,在此基础上提出以加速近端梯度法(APG)和快速数据投影法(FDPM)分别实现离线和在线的低秩稀疏分解,从而实现混响抑制和目标回波增强。试验结果验证了假设模型的有效性,并且两种分解算法均能有效地增强目标回波。
  • 图  1  离线数据矩阵${{X}}$的奇异值分布

    图  2  离线APG方法的低秩稀疏矩阵分解

    图  3  在线FDPM方法的低秩稀疏分解

    表  1  用于求解低秩稀疏矩阵分解问题的APG算法

     输入:离线数据矩阵${{X}} \in {\mathbb{R}^{M \times N}}$
     输出:低秩矩阵${{L}} = {{{L}}_{{n_{\rm{e}}}}}$,稀疏矩阵${{S}} = {{{S}}_{{n_{\rm{e}}}}}$
     非负参数:$\lambda $, ${\mu _{\rm{1}}}$, $\bar \mu $, $\delta < {\rm{1}}$, $\eta < {\rm{1}}$, $L \ge {L_f}$, $\varepsilon $, ${\rm{maxIter}}$
     初始化:${ {{L} }_{\rm{0} } } = { {{L} }_{\rm{1} } } = {{{\textit{0}}}}$, ${ {{S} }_{\rm{0} } } = { {{S} }_{\rm{1} } } = {{{\textit{0}}} }$, ${t_{\rm{0}}} = {t_{\rm{1}}} = {\rm{1}}$, $\bar \mu = \delta {\mu _{\rm{1}}}$, ${n_{\rm{e}}} = n = {\rm{1}}$
     (1) while $n \le {\rm{maxIter} }$ 与 $\left\| {{{X}} - {{{L}}_n} - {{{S}}_n}} \right\|_{\rm{F}}^{\rm{2}} > \varepsilon $
     (2) ${{Z}}_n^{{L}} = {{{L}}_n} + \dfrac{{{t_{n - {\rm{1}}}} - {\rm{1}}}}{{{t_n}}}\left( {{{{L}}_n} - {{{L}}_{n - {\rm{1}}}}} \right)$, ${{Z}}_n^{{S}} = {{{S}}_n} + \dfrac{{{t_{n - {\rm{1}}}} - {\rm{1}}}}{{{t_n}}}\left( {{{{S}}_n} - {{{S}}_{n - {\rm{1}}}}} \right)$
     (3) ${{A}}_n^{{L}} = {{Z}}_n^{{L}} - {{({{Z}}_n^{{L}} + {{Z}}_n^{{S}} - {{X}})} / L}$, $\left[ {{{{V}}_n},{{{D}}_n}} \right] = {\rm{eig}}\left[ {{{({{A}}_n^{{L}})}^{\rm{T}}}{{A}}_n^{{L}}} \right]$, ${{{\Sigma }}_n} = {{D}}_n^{{{\rm{1}} / {\rm{2}}}}$, ${{{U}}_n} = {{A}}_n^{{L}}{{{V}}_n}{{\Sigma }}_n^{{\rm{ - 1}}}$, ${{{L}}_{n + {\rm{1}}}} = {{{U}}_n}{T_{{{{\mu _n}} / L}}}({{{\Sigma }}_n}){{V}}_n^{\rm{T}}$
     (4) ${{A}}_n^{{S}} = {{Z}}_n^{{S}} - {{({{Z}}_n^{{L}} + {{Z}}_n^{{S}} - {{X}})} / L}$, ${{{S}}_{n + {\rm{1}}}} = {T_{{{{\mu _n}\lambda } / L}}}({{A}}_n^{{S}})$
     (5) ${t_{n + {\rm{1}}}} = {{\left( {1 + \sqrt {4t_n^2 + 1} } \right)} / {\rm{2}}}$, ${\mu _{n + 1}} = \max (\eta {\mu _n},\bar \mu )$, ${n_{\rm{e}}} = n = n + 1$
     (6) end
    下载: 导出CSV

    表  2  用于求解低秩稀疏在线分解问题的FDPM算法

     输入:快拍数据向量${{x}}[n] \in {\mathbb{R}^{M \times 1}}$
     输出:低秩成分${{l}}[n]$,稀疏成分${{s}}[n]$
     非负参数:秩$r$,稀疏度$k$, $0 < \bar \mu \le 1$,或$0 < \varepsilon < 1$和$\sigma _{\tilde{ x}}^{\rm{2}}[{\rm{0}}]$
     初始化:${{{U}}_{\rm{0}}}$
     (1) for $n = 1:N$
     (2) $\tilde{ x}[n] = {{x}}[n]$, ${{r}}[n] = {{U}}_{n - {\rm{1}}}^{\rm{T}}\tilde{ x}[n]$
     (3) $\mu $ from 式(11), ${ {{T} }_n} = { {{U} }_{n - {\rm{1} } } } + \mu \tilde{ x}[n]{{r} }^{\rm{T} }{[n] }$
     (4) ${{a}}[n] = {{r}}[n] - \left\| {{{r}}[n]} \right\|{{{e}}_{\rm{1}}}$, ${{{P}}_n} = {{{T}}_n} - \left( {{{\rm{2}} / {{{\left\| {{{a}}[n]} \right\|}^{\rm{2}}}}}} \right) $
       $({ {{T} }_n}{{a} }[n]){{a} }^{\rm{T} }{[n] }$, ${{{U}}_n} = {\rm{normalize}}\{ {{{P}}_n}\} $
     (5) ${{l}}[n] = {{{U}}_n}{{U}}_n^{\rm{T}}\tilde{ x}[n]$, ${{s}}[n] = {P_\Omega }({{x}}[n] - {{l}}[n])$,
       ${{g}}[n] = {{x}}[n] - {{l}}[n] - {{s}}[n]$
     (6) end
    下载: 导出CSV

    表  3  应用分离算法前后目标和混响强度对比(归一化单位)

    方法指标帧10帧11帧12帧13帧14帧15帧16
    原始目标幅度1.001.001.001.001.001.001.00
    混响平均幅度0.110.100.110.110.110.110.11
    APG目标幅度0.540.540.550.530.380.460.54
    混响平均幅度(×10–2)0.110.120.120.120.110.110.11
    FDPM目标幅度0.730.770.770.720.600.700.75
    混响平均幅度(×10–2)0.110.110.110.110.100.090.08
    下载: 导出CSV
  • [1] GE Fengxiang, CHEN Ying, and LI Weichang. Target detecton and tracking via structured convex optimization[C]. Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, 2017: 426–430. doi: 10.1109/ICASSP.2017.7952191.
    [2] ZOU Hui and XUE Lingzhou. A selective overview of sparse principal component analysis[J]. Proceedings of the IEEE, 2018, 106(8): 1311–1320. doi: 10.1109/JPROC.2018.2846588
    [3] LI Haiyan, YIN Fan, and LI Chao. A high-accuracy target tracking method and its application in acoustic engineering[C]. Proceedings of the IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2019: 690–694. doi: 10.1109/SIPROCESS.2019.8868499.
    [4] BOUWMANS T, JAVED S, ZHANG Hongyang, et al. On the applications of robust PCA in image and video processing[J]. Proceedings of the IEEE, 2018, 106(8): 1427–1457. doi: 10.1109/JPROC.2018.2853589
    [5] VAN LUONG H, DELIGIANNIS N, SEILER J, et al. Compressive online robust principal component analysis via n-1 minimization[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4314–4329. doi: 10.1109/TIP.2018.2831915
    [6] 杨依忠, 汪鹏飞, 胡雄楼, 等. 基于鲁棒主成分分析的运动目标检测优化算法[J]. 电子与信息学报, 2018, 40(6): 1309–1315. doi: 10.11999/JEIT170789

    YANG Yizhong, WANG Pengfei, HU Xionglou, et al. Moving object detection optimization algorithm based on robust principal component analysis[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1309–1315. doi: 10.11999/JEIT170789
    [7] ZHENG Zhi, HUANG Yixiao, WANG Wenqin, et al. Spatial smoothing PAST algorithm for DOA tracking using difference coarray[J]. IEEE Signal Processing Letters, 2019, 26(11): 1623–1627. doi: 10.1109/LSP.2019.2942146
    [8] WU Qiang, ZHENG Jiansheng, DONG Zhicheng, et al. An improved adaptive subspace tracking algorithm based on approximated power iteration[J]. IEEE Access, 2018, 6: 43136–43145. doi: 10.1109/ACCESS.2018.2863557
    [9] DOUKOPOULOS X G and MOUSTAKIDES G V. Fast and stable subspace tracking[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1452–1465. doi: 10.1109/tsp.2007.909335
    [10] HSU D, KAKADE S M, and ZHANG Tong. Robust matrix decomposition with sparse corruptions[J]. IEEE Transactions on Information Theory, 2011, 57(11): 7221–7234. doi: 10.1109/TIT.2011.2158250
    [11] HE Jun, BALZANO L, and LUI J C S. Online robust subspace tracking from partial information[EB/OL]. https://arxiv.org/pdf/1109.3827v2.pdf, 2011.
    [12] TOH K C and YUN S. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems[J]. Pacific Journal of Optimization, 2010, 6(3): 615–640.
    [13] LIN Zhouchen, CHEN Minming, and MA Yi. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[EB/OL]. https://arxiv.org/pdf/1009.5055v3.pdf, 2010.
    [14] BECK A and TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. doi: 10.1137/080716542
    [15] LIN Zhouchen, ARVIND G, JOHN W, et al. Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix[R]. Coordinated Science Laboratory Report no. UILU-ENG-09-2214, DC-246, 2009. doi: 10.1017/S0025315400020749.
    [16] LI Weichang, SUBRAHMANYA N, and XU Feng. Online subspace and sparse filtering for target tracking in reverberant environment[C]. Proceedings of the IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hoboken, USA, 2012: 329–332. doi: 10.1109/SAM.2012.6250502.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  908
  • HTML全文浏览量:  370
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-03
  • 修回日期:  2020-10-12
  • 网络出版日期:  2020-12-07
  • 刊出日期:  2021-07-10

目录

    /

    返回文章
    返回