A Geodesic Locality Canonical Correlation Analysis Method for Image Recognition
-
摘要: 典型相关分析(CCA)是一种经典的多模态特征学习方法,能够从不同模态同时学习相关性最大的低维特征,然而难以发现隐藏在样本空间中的非线性流形结构。该文提出一种基于测地流形的多模态特征学习方法,即测地局部典型相关分析(GeoLCCA)。该方法利用测地距离构建了低维相关特征的测地散布,并进一步通过最大化模态间的相关性和最小化模态内的测地散布学习更具鉴别力的非线性相关特征。该文不仅在理论上对提出的方法进行了分析,而且在真实的图像数据集上验证了方法的有效性。Abstract: Canonical Correlation Analysis (CCA) is a classic multi-modal feature learning method, which can learn low-dimensional features with the maximum correlation from different modalities. However, it is difficult for CCA to find the nonlinear manifold structures hidden in the sample spaces. This paper proposes a multi-modal feature learning method based on geodesic manifolds, namely Geodesic Locality Canonical Correlation Analysis (GeoLCCA).The geodesic distances are used to construct the geodesic scatters of low-dimensional correlation features, and the nonlinear correlation features with better discriminative power are learned by maximizing the between-modal correlation and minimizing the within-modal geodesic scatters. This paper not only analyzes the proposed method in theory, but also verifies the effective of the proposed method on the real-world image datasets.
-
表 1 在GT图像数据集上的识别率(%)及标准差
训练样本数5 训练样本数6 训练样本数7 训练样本数8 GeoLCCA 67.26±2.01 71.36±1.83 76.10±1.28 78.20±1.31 GMCCA 65.22±1.64 66.64±1.56 69.70±1.75 72.06±1.66 LPCCA 44.84±1.73 50.09±3.79 54.15±1.74 57.46±2.56 DMCCA 63.56±2.77 67.80±1.29 73.67±1.71 75.80±1.99 CCA 59.08±1.81 61.78±1.35 66.22±1.66 68.14±2.01 A±B: A表示平均识别率(%),B表示对应的识别率标准差 表 2 在ORL图像数据集上的识别率(%)及标准差
训练样本数5 训练样本数6 训练样本数7 训练样本数8 GeoLCCA 95.15±1.58 97.19±1.33 98.25±0.83 99.50±0.65 GMCCA 93.90±2.04 95.19±0.89 97.00±1.53 98.50±1.42 LPCCA 84.70±3.00 87.81±2.40 89.17±2.00 94.25±2.58 DMCCA 93.80±1.53 95.50±1.74 96.75±1.49 99.38±0.66 CCA 90.35±1.94 93.19±1.94 93.83±1.68 97.25±1.15 A±B: A表示平均识别率(%),B表示对应的识别率标准差 -
刘政怡, 段群涛, 石松, 等. 基于多模态特征融合监督的RGB-D图像显著性检测[J]. 电子与信息学报, 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297LIU Zhengyi, DUAN Quntao, SHI Song, et al. RGB-D image saliency detection based on multi-modal feature-fused supervision[J]. Journal of Electronics &Information Technology, 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297 YE Qiaolin, FU Liyong, ZHANG Zhao, et al. Lp- and Ls-norm distance based robust linear discriminant analysis[J]. Neural Networks, 2018, 105: 393–404. doi: 10.1016/j.neunet.2018.05.020 王肖锋, 孙明月, 葛为民. 基于图像协方差无关的增量特征提取方法研究[J]. 电子与信息学报, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138WANG Xiaofeng, SUN Mingyue, and GE Weimin. An incremental feature extraction method without estimating image covariance matrix[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138 YUAN Sen and MAO Xia. Exponential elastic preserving projections for facial expression recognition[J]. Neurocomputing, 2018, 275: 711–724. doi: 10.1016/j.neucom.2017.08.067 WANG Rong, NIE Feiping, HONG Richang, et al. Fast and orthogonal locality preserving projections for dimensionality reduction[J]. IEEE Transactions on Image Processing, 2017, 26(10): 5019–5030. doi: 10.1109/TIP.2017.2726188 ZHU Yani, ZHU Chaoyang, and LI Xiaoxin. Improved principal component analysis and linear regression classification for face recognition[J]. Signal Processing, 2018, 145: 175–182. doi: 10.1016/j.sigpro.2017.11.018 KUMAR S, BHUYAN M K, LOVELL B C, et al. Hierarchical uncorrelated multiview discriminant locality preserving projection for multiview facial expression recognition[J]. Journal of Visual Communication and Image Representation, 2018, 54: 171–181. doi: 10.1016/j.jvcir.2018.04.013 GAJJAR S, KULAHCI M, and PALAZOGLU A. Real-time fault detection and diagnosis using sparse principal component analysis[J]. Journal of Process Control, 2018, 67: 112–128. doi: 10.1016/j.jprocont.2017.03.005 WANG Hao, FAN Yuanyuan, FANG Baofu, et al. Generalized linear discriminant analysis based on Euclidean norm for gait recognition[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(4): 569–576. doi: 10.1007/s13042-016-0540-0 董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266 SUN Quansen, ZENG Shenggen, LIU Yan, et al. A new method of feature fusion and its application in image recognition[J]. Pattern Recognition, 2005, 38(12): 2437–2448. doi: 10.1016/j.patcog.2004.12.013 CHEN Jia, WANG Gang, and GIANNAKIS G B. Graph multiview canonical correlation analysis[J]. IEEE Transactions on Signal Processing, 2019, 67(11): 2826–2838. doi: 10.1109/TSP.2019.2910475 LIU Yiqi, LIU Bin, ZHAO Xiujie, et al. A mixture of variational canonical correlation analysis for nonlinear and quality-relevant process monitoring[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6478–6486. doi: 10.1109/TIE.2017.2786253 HONG Kan, LIU Guodong, CHEN Wentao, et al. Classification of the emotional stress and physical stress using signal magnification and canonical correlation analysis[J]. Pattern Recognition, 2018, 77: 140–149. doi: 10.1016/j.patcog.2017.12.013 SAFO S E, AHN J, JEON Y, et al. Sparse generalized eigenvalue problem with application to canonical correlation analysis for integrative analysis of methylation and gene expression data[J]. Biometrics, 2018, 74(4): 1362–1371. doi: 10.1111/biom.12886 GAO Lei, QI Lin, CHEN Enqing, et al. Discriminative multiple canonical correlation analysis for information fusion[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1951–1965. doi: 10.1109/TIP.2017.2765820 GENG Fazhan and QIAN Suping. An optimal reproducing kernel method for linear nonlocal boundary value problems[J]. Applied Mathematics Letters, 2018, 77: 49–56. doi: 10.1016/j.aml.2017.10.002 MELZER T, REITER M, and BISCHOF H. Appearance models based on kernel canonical correlation analysis[J]. Pattern Recognition, 2003, 36(9): 1961–1971. doi: 10.1016/s0031-3203(03)00058-x ALAM M A, FUKUMIZU K, and WANG Yuping. Influence function and robust variant of kernel canonical correlation analysis[J]. Neurocomputing, 2018, 304: 12–29. doi: 10.1016/j.neucom.2018.04.008 SUN Tingkai and CHEN Songcan. Locality preserving CCA with applications to data visualization and pose estimation[J]. Image and Vision Computing, 2007, 25(5): 531–543. doi: 10.1016/j.imavis.2006.04.014 CHEN Jia, WANG Gang, SHEN Yanning, et al. Canonical correlation analysis of datasets with a common source graph[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4398–4408. doi: 10.1109/TSP.2018.2853130 BALASUBRAMANIAN M, SCHWARTZ E L, TENENBAUM J B, et al. The Isomap algorithm and topological stability[J]. Science, 2002, 295(5552): 7. doi: 10.1126/science.295.5552.7a ZHANG Guiying, ZOU Wenbin, ZHANG Xianjie, et al. Singular value decomposition based virtual representation for face recognition[J]. Multimedia Tools and Applications, 2018, 77(6): 7171–7186. doi: 10.1007/s11042-017-4627-8 SU Shuzhi, GE Hongwei, YUAN Yunhao, et al. A label embedding kernel method for multi-view canonical correlation analysis[J]. Multimedia Tools and Applications, 2017, 76(12): 13785–13803. doi: 10.1007/s11042-016-3786-3 SU Shuzhi, FANG Xianjin, YANG Gaoming, et al. Self-balanced multi-view orthogonality correlation analysis for image feature learning[J]. Infrared Physics & Technology, 2019, 100: 44–51. doi: 10.1016/j.infrared.2019.05.008
表(2)
计量
- 文章访问数: 1494
- HTML全文浏览量: 478
- PDF下载量: 63
- 被引次数: 0