高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向图像识别的测地局部典型相关分析方法

许欢 苏树智 颜文婧 邓瀛灏 谢军

许欢, 苏树智, 颜文婧, 邓瀛灏, 谢军. 面向图像识别的测地局部典型相关分析方法[J]. 电子与信息学报, 2020, 42(11): 2813-2818. doi: 10.11999/JEIT200123
引用本文: 许欢, 苏树智, 颜文婧, 邓瀛灏, 谢军. 面向图像识别的测地局部典型相关分析方法[J]. 电子与信息学报, 2020, 42(11): 2813-2818. doi: 10.11999/JEIT200123
Huan XU, Shuzhi SU, Wenjing YAN, Yinghao DENG, Jun XIE. A Geodesic Locality Canonical Correlation Analysis Method for Image Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2813-2818. doi: 10.11999/JEIT200123
Citation: Huan XU, Shuzhi SU, Wenjing YAN, Yinghao DENG, Jun XIE. A Geodesic Locality Canonical Correlation Analysis Method for Image Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2813-2818. doi: 10.11999/JEIT200123

面向图像识别的测地局部典型相关分析方法

doi: 10.11999/JEIT200123
基金项目: 国家自然科学基金(61806006),安徽省高等学校自然科学研究基金(KJ2018A0083),中国博士后科学基金(2019M660149)
详细信息
    作者简介:

    许欢:女,1982年生,助教,研究方向为机器学习、图像处理、模式识别

    苏树智:男,1987年生,副教授,研究方向为多模态模式识别、特征学习、子空间融合、图像处理

    颜文婧:女,1984年生,讲师,研究方向为机器学习、模式识别、信号处理

    通讯作者:

    苏树智 sushuzhi@foxmail.com

  • 中图分类号: TN911.73; TP391.4

A Geodesic Locality Canonical Correlation Analysis Method for Image Recognition

Funds: The National Natural Science Foundation of China (61806006), The Anhui Province Natural Science Research Foundation of Institutions of Higher Learning (KJ2018A0083), The China Postdoctoral Science Foundation (2019M660149)
  • 摘要: 典型相关分析(CCA)是一种经典的多模态特征学习方法,能够从不同模态同时学习相关性最大的低维特征,然而难以发现隐藏在样本空间中的非线性流形结构。该文提出一种基于测地流形的多模态特征学习方法,即测地局部典型相关分析(GeoLCCA)。该方法利用测地距离构建了低维相关特征的测地散布,并进一步通过最大化模态间的相关性和最小化模态内的测地散布学习更具鉴别力的非线性相关特征。该文不仅在理论上对提出的方法进行了分析,而且在真实的图像数据集上验证了方法的有效性。
  • 表  1  在GT图像数据集上的识别率(%)及标准差

    训练样本数5训练样本数6训练样本数7训练样本数8
    GeoLCCA67.26±2.0171.36±1.8376.10±1.2878.20±1.31
    GMCCA65.22±1.6466.64±1.5669.70±1.7572.06±1.66
    LPCCA44.84±1.7350.09±3.7954.15±1.7457.46±2.56
    DMCCA63.56±2.7767.80±1.2973.67±1.7175.80±1.99
    CCA59.08±1.8161.78±1.3566.22±1.6668.14±2.01
    A±B: A表示平均识别率(%),B表示对应的识别率标准差
    下载: 导出CSV

    表  2  在ORL图像数据集上的识别率(%)及标准差

    训练样本数5训练样本数6训练样本数7训练样本数8
    GeoLCCA95.15±1.5897.19±1.3398.25±0.8399.50±0.65
    GMCCA93.90±2.0495.19±0.8997.00±1.5398.50±1.42
    LPCCA84.70±3.0087.81±2.4089.17±2.0094.25±2.58
    DMCCA93.80±1.5395.50±1.7496.75±1.4999.38±0.66
    CCA90.35±1.9493.19±1.9493.83±1.6897.25±1.15
    A±B: A表示平均识别率(%),B表示对应的识别率标准差
    下载: 导出CSV
  • 刘政怡, 段群涛, 石松, 等. 基于多模态特征融合监督的RGB-D图像显著性检测[J]. 电子与信息学报, 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297

    LIU Zhengyi, DUAN Quntao, SHI Song, et al. RGB-D image saliency detection based on multi-modal feature-fused supervision[J]. Journal of Electronics &Information Technology, 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297
    YE Qiaolin, FU Liyong, ZHANG Zhao, et al. Lp- and Ls-norm distance based robust linear discriminant analysis[J]. Neural Networks, 2018, 105: 393–404. doi: 10.1016/j.neunet.2018.05.020
    王肖锋, 孙明月, 葛为民. 基于图像协方差无关的增量特征提取方法研究[J]. 电子与信息学报, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138

    WANG Xiaofeng, SUN Mingyue, and GE Weimin. An incremental feature extraction method without estimating image covariance matrix[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138
    YUAN Sen and MAO Xia. Exponential elastic preserving projections for facial expression recognition[J]. Neurocomputing, 2018, 275: 711–724. doi: 10.1016/j.neucom.2017.08.067
    WANG Rong, NIE Feiping, HONG Richang, et al. Fast and orthogonal locality preserving projections for dimensionality reduction[J]. IEEE Transactions on Image Processing, 2017, 26(10): 5019–5030. doi: 10.1109/TIP.2017.2726188
    ZHU Yani, ZHU Chaoyang, and LI Xiaoxin. Improved principal component analysis and linear regression classification for face recognition[J]. Signal Processing, 2018, 145: 175–182. doi: 10.1016/j.sigpro.2017.11.018
    KUMAR S, BHUYAN M K, LOVELL B C, et al. Hierarchical uncorrelated multiview discriminant locality preserving projection for multiview facial expression recognition[J]. Journal of Visual Communication and Image Representation, 2018, 54: 171–181. doi: 10.1016/j.jvcir.2018.04.013
    GAJJAR S, KULAHCI M, and PALAZOGLU A. Real-time fault detection and diagnosis using sparse principal component analysis[J]. Journal of Process Control, 2018, 67: 112–128. doi: 10.1016/j.jprocont.2017.03.005
    WANG Hao, FAN Yuanyuan, FANG Baofu, et al. Generalized linear discriminant analysis based on Euclidean norm for gait recognition[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(4): 569–576. doi: 10.1007/s13042-016-0540-0
    董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266

    DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266
    SUN Quansen, ZENG Shenggen, LIU Yan, et al. A new method of feature fusion and its application in image recognition[J]. Pattern Recognition, 2005, 38(12): 2437–2448. doi: 10.1016/j.patcog.2004.12.013
    CHEN Jia, WANG Gang, and GIANNAKIS G B. Graph multiview canonical correlation analysis[J]. IEEE Transactions on Signal Processing, 2019, 67(11): 2826–2838. doi: 10.1109/TSP.2019.2910475
    LIU Yiqi, LIU Bin, ZHAO Xiujie, et al. A mixture of variational canonical correlation analysis for nonlinear and quality-relevant process monitoring[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6478–6486. doi: 10.1109/TIE.2017.2786253
    HONG Kan, LIU Guodong, CHEN Wentao, et al. Classification of the emotional stress and physical stress using signal magnification and canonical correlation analysis[J]. Pattern Recognition, 2018, 77: 140–149. doi: 10.1016/j.patcog.2017.12.013
    SAFO S E, AHN J, JEON Y, et al. Sparse generalized eigenvalue problem with application to canonical correlation analysis for integrative analysis of methylation and gene expression data[J]. Biometrics, 2018, 74(4): 1362–1371. doi: 10.1111/biom.12886
    GAO Lei, QI Lin, CHEN Enqing, et al. Discriminative multiple canonical correlation analysis for information fusion[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1951–1965. doi: 10.1109/TIP.2017.2765820
    GENG Fazhan and QIAN Suping. An optimal reproducing kernel method for linear nonlocal boundary value problems[J]. Applied Mathematics Letters, 2018, 77: 49–56. doi: 10.1016/j.aml.2017.10.002
    MELZER T, REITER M, and BISCHOF H. Appearance models based on kernel canonical correlation analysis[J]. Pattern Recognition, 2003, 36(9): 1961–1971. doi: 10.1016/s0031-3203(03)00058-x
    ALAM M A, FUKUMIZU K, and WANG Yuping. Influence function and robust variant of kernel canonical correlation analysis[J]. Neurocomputing, 2018, 304: 12–29. doi: 10.1016/j.neucom.2018.04.008
    SUN Tingkai and CHEN Songcan. Locality preserving CCA with applications to data visualization and pose estimation[J]. Image and Vision Computing, 2007, 25(5): 531–543. doi: 10.1016/j.imavis.2006.04.014
    CHEN Jia, WANG Gang, SHEN Yanning, et al. Canonical correlation analysis of datasets with a common source graph[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4398–4408. doi: 10.1109/TSP.2018.2853130
    BALASUBRAMANIAN M, SCHWARTZ E L, TENENBAUM J B, et al. The Isomap algorithm and topological stability[J]. Science, 2002, 295(5552): 7. doi: 10.1126/science.295.5552.7a
    ZHANG Guiying, ZOU Wenbin, ZHANG Xianjie, et al. Singular value decomposition based virtual representation for face recognition[J]. Multimedia Tools and Applications, 2018, 77(6): 7171–7186. doi: 10.1007/s11042-017-4627-8
    SU Shuzhi, GE Hongwei, YUAN Yunhao, et al. A label embedding kernel method for multi-view canonical correlation analysis[J]. Multimedia Tools and Applications, 2017, 76(12): 13785–13803. doi: 10.1007/s11042-016-3786-3
    SU Shuzhi, FANG Xianjin, YANG Gaoming, et al. Self-balanced multi-view orthogonality correlation analysis for image feature learning[J]. Infrared Physics & Technology, 2019, 100: 44–51. doi: 10.1016/j.infrared.2019.05.008
  • 加载中
表(2)
计量
  • 文章访问数:  1494
  • HTML全文浏览量:  478
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-21
  • 修回日期:  2020-07-23
  • 网络出版日期:  2020-07-23
  • 刊出日期:  2020-11-16

目录

    /

    返回文章
    返回