高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原子范数的无网格稀疏恢复非正侧视阵空时自适应处理算法

章涛 郭骏骋 来燃

章涛, 郭骏骋, 来燃. 基于原子范数的无网格稀疏恢复非正侧视阵空时自适应处理算法[J]. 电子与信息学报, 2021, 43(5): 1235-1242. doi: 10.11999/JEIT200114
引用本文: 章涛, 郭骏骋, 来燃. 基于原子范数的无网格稀疏恢复非正侧视阵空时自适应处理算法[J]. 电子与信息学报, 2021, 43(5): 1235-1242. doi: 10.11999/JEIT200114
Tao ZHANG, Juncheng GUO, Ran LAI. Gridless Sparse Recovery for Non-sidelooking Space-Time Adaptive Processing Based on Atomic Norm Minimization[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1235-1242. doi: 10.11999/JEIT200114
Citation: Tao ZHANG, Juncheng GUO, Ran LAI. Gridless Sparse Recovery for Non-sidelooking Space-Time Adaptive Processing Based on Atomic Norm Minimization[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1235-1242. doi: 10.11999/JEIT200114

基于原子范数的无网格稀疏恢复非正侧视阵空时自适应处理算法

doi: 10.11999/JEIT200114
基金项目: 国家自然科学基金(U1733116),中央高校基本科研业务费中国民航大学资助专项(3122019048),中国民航大学蓝天青年学者项目
详细信息
    作者简介:

    章涛:男,1980年生,博士,副教授,研究方向为机载雷达信号处理及其应用

    郭骏骋:男,1995年生,硕士生,研究方向为稀疏恢复空时自适应处理

    来燃:男,1990年生,工程师,研究方向为机载雷达信号处理应用

    通讯作者:

    章涛 t-zhang@cauc.edu.cn

  • 中图分类号: TN911

Gridless Sparse Recovery for Non-sidelooking Space-Time Adaptive Processing Based on Atomic Norm Minimization

Funds: The National Natural Science Foundation of China (U1733116), The Fundamental Research Foundation for Central Universities-CAUC(3122019048), The Young Scholar Foundation of Civil Aviation University of China
  • 摘要: 基于杂波谱稀疏恢复的空时自适应处理(STAP)方法可以显著降低对杂波样本数的要求,十分适合缺少样本情况下的机载雷达杂波抑制。然而,现有稀疏恢复STAP方法利用离散化空时导向矢量字典进行重构,在非正侧视阵情况下,由于杂波脊不在字典网格点上,字典失配问题严重影响杂波抑制性能。针对上述问题,该文提出了一种基于原子范数的无网格稀疏恢复空时自适应处理方法(ANM-STAP),利用低秩矩阵恢复理论实现连续空时平面的稀疏恢复,克服了稀疏恢复中的字典失配问题,获得了非正侧视阵情况下的高分辨率杂波空时谱,有效提高了STAP杂波抑制性能。Monte Carlo实验证明,该文方法STAP处理性能在非正侧视阵情况下优于已有字典离散化处理的稀疏恢复STAP方法。
  • 图  1  机载雷达非正侧视阵列几何结构

    图  2  杂波脊在空时平面上的分布示意图

    图  3  偏航角$\psi = {0^ \circ }$正侧视阵模式稀疏恢复杂波谱

    图  4  偏航角$\psi = {45^ \circ }$时稀疏恢复的杂波空时谱

    图  5  偏航角$\psi = {90^ \circ }$时稀疏恢复的杂波空时谱

    图  6  不同偏航角下的信干噪比损失

    图  7  ANM-STAP两种实现方法的收敛性能比较

  • [1] KLEMM R. Applications of Space-time Adaptive Processing[M]. London: Institution of Electrical Engineers, 2004.
    [2] REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893
    [3] DUAN Keqing, YUAN Huadong, XU Hong, et al. Sparsity-based non-stationary clutter suppression technique for airborne radar[J]. IEEE Access, 2018, 6: 56162–56169. doi: 10.1109/ACCESS.2018.2873021
    [4] CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
    [5] ENDER J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402–1414. doi: 10.1016/j.sigpro.2009.11.009
    [6] 阳召成, 黎湘, 王宏强. 基于空时功率谱稀疏性的空时自适应处理技术研究进展[J]. 电子学报, 2014, 42(6): 1194–1204. doi: 10.3969/j.issn.0372-2112.2014.06.024

    YANG Zhaocheng, LI Xiang, and WANG Hongqiang. An overview of space-time adaptive processing technology based on sparsity of space-time power spectrum[J]. Acta Electronica Sinica, 2014, 42(6): 1194–1204. doi: 10.3969/j.issn.0372-2112.2014.06.024
    [7] 马泽强, 王希勤, 刘一民, 等. 基于稀疏恢复的空时二维自适应处理技术研究现状[J]. 雷达学报, 2014, 3(2): 217–228. doi: 10.3724/SP.J.1300.2014.14002

    MA Zeqiang, WANG Xiqin, LIU Yimin, et al. An overview on sparse recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217–228. doi: 10.3724/SP.J.1300.2014.14002
    [8] SUN Ke, MENG Huadong, WANG Yongliang, et al. Direct data domain STAP using sparse representation of clutter spectrum[J]. Signal Processing, 2011, 91(9): 2222–2236. doi: 10.1016/j.sigpro.2011.04.006
    [9] 孙珂, 张颢, 李刚, 等. 基于杂波谱稀疏恢复的空时自适应处理[J]. 电子学报, 2011, 39(6): 1389–1393.

    SUN Ke, ZHANG Hao, LI Gang, et al. STAP via sparse recovery of clutter spectrum[J]. Acta Electronica Sinica, 2011, 39(6): 1389–1393.
    [10] YANG Zhaocheng, QIN Yuliang, DE LAMARE R C, et al. Sparsity-based direct data domain space-time adaptive processing with intrinsic clutter motion[J]. Circuits, Systems, and Signal Processing, 2017, 36(1): 219–246. doi: 10.1007/s00034-016-0301-z
    [11] WANG Lei, LIU Yimin, MA Zeqiang, et al. A novel STAP method based on structured sparse recovery of clutter spectrum[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 561–565. doi: 10.1109/RADAR.2015.7131061.
    [12] DUAN Keqing, WANG Zetao, XIE Wenchong, et al. Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar[J]. IET Signal Processing, 2017, 11(5): 544–553. doi: 10.1049/iet-spr.2016.0183
    [13] SUN Yuze, YANG Xiaopeng, LONG Teng, et al. Robust sparse Bayesian learning STAP method for discrete interference suppression in nonhomogeneous clutter[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1003–1008. doi: 10.1109/RADAR.2017.7944350.
    [14] 吕晓德, 杨璟茂, 岳琦, 等. 基于稀疏贝叶斯学习的机载双基雷达杂波抑制[J]. 电子与信息学报, 2018, 40(11): 2651–2658. doi: 10.11999/JEIT180062

    LV Xiaode, YANG Jingmao, YUE Qi, et al. Airborne bistatic radar clutter suppression based on sparse Bayesian learning[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2651–2658. doi: 10.11999/JEIT180062
    [15] YANG Zhaocheng, LI Xiang, WANG Hongqiang, et al. Knowledge-aided STAP with sparse-recovery by exploiting spatio-temporal sparsity[J]. IET Signal Processing, 2016, 10(2): 150–161. doi: 10.1049/iet-spr.2014.0255
    [16] DUAN Keqing, LIU Weijian, DUAN Guangqing, et al. Off-grid effects mitigation exploiting knowledge of the clutter ridge for sparse recovery STAP[J]. IET Radar, Sonar & Navigation, 2018, 12(5): 557–564. doi: 10.1049/iet-rsn.2017.0425
    [17] BAI Gatai, TAO Ran, ZHAO Juan, et al. Parameter-searched OMP method for eliminating basis mismatch in space-time spectrum estimation[J]. Signal Processing, 2017, 138: 11–15. doi: 10.1016/j.sigpro.2017.03.003
    [18] CANDÈS E J and FERNANDEZ‐GRANDA C. Towards a mathematical theory of super-resolution[J]. Communications on Pure and Applied Mathematics, 2014, 67(6): 906–956. doi: 10.1002/cpa.21455
    [19] TANG Gongguo, BHASKAR B, SHAH P, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465–7490. doi: 10.1109/TIT.2013.2277451
    [20] CHI Yuejie and CHEN Yuxin. Compressive two-dimensional harmonic retrieval via atomic norm minimization[J]. IEEE Transactions on Signal Processing, 2015, 63(4): 1030–1042. doi: 10.1109/TSP.2014.2386283
    [21] YANG Zai, XIE Lihua, and STOICA P. Vandermonde decomposition of multilevel Toeplitz matrices with application to multidimensional super-resolution[J]. IEEE Transactions on Information Theory, 2016, 62(6): 3685–3701. doi: 10.1109/TIT.2016.2553041
    [22] SEN S. Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1510–1523. doi: 10.1109/JSTSP.2015.2464187
    [23] GINI F and GRECO M. Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter[J]. Signal Processing, 2002, 82(12): 1847–1859. doi: 10.1016/S0165-1684(02)00315-8
  • 加载中
图(7)
计量
  • 文章访问数:  1363
  • HTML全文浏览量:  332
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-21
  • 修回日期:  2020-11-26
  • 网络出版日期:  2020-12-01
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回