高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环相关熵谱密度估计高效算法研究

李辉

江若宜, 季薇, 郑宝玉. 无线传感器网络中协作通信的能耗优化方法研究[J]. 电子与信息学报, 2010, 32(6): 1475-1479. doi: 10.3724/SP.J.1146.2009.00521
引用本文: 李辉. 循环相关熵谱密度估计高效算法研究[J]. 电子与信息学报, 2021, 43(2): 310-318. doi: 10.11999/JEIT200113
Jiang Ruo-yi, Ji Wei, Zheng Bao-yu. Joint Optimization of Energy Consumption in Cooperative Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1475-1479. doi: 10.3724/SP.J.1146.2009.00521
Citation: Hui LI. Study on High Efficient Algorithm for Cyclic Correntropy Spectral Analysis[J]. Journal of Electronics & Information Technology, 2021, 43(2): 310-318. doi: 10.11999/JEIT200113

循环相关熵谱密度估计高效算法研究

doi: 10.11999/JEIT200113
基金项目: 国家自然科学基金(51375319)
详细信息
    作者简介:

    李辉:男,1968年生,教授,研究方向为非平稳信号处理及机电设备故障诊断

    通讯作者:

    李辉 huili68@163.com

  • 中图分类号: TN911

Study on High Efficient Algorithm for Cyclic Correntropy Spectral Analysis

Funds: The National Natural Science Foundation of China (51375319)
  • 摘要: 针对循环相关熵谱估计循环周期图检测(CPD)算法存在计算效率低、频谱分辨率低和易产生“频谱泄漏”的问题,该文提出一种循环相关熵谱估计的Correntrogram算法。Correntrogram算法借鉴Wigner-Ville 分布(WVD)时频分辨率高的优势,将WVD算法中瞬时自相关函数替换为时变自相关熵函数,即可得到一种循环相关熵谱密度估计算法,称为Correntrogram。首先计算信号的时变自相关熵函数矩阵,再计算时变自相关熵函数矩阵各行的FFT,得到循环自相关熵函数矩阵,最后计算循环自相关熵函数矩阵各列的FFT,得到循环相关熵谱密度。通过仿真调幅信号的处理结果证明:Correntrogram算法有效提高了循环相关熵谱估计效率,避免了“频谱泄漏”,提高了频谱分辨率,该算法程序运行可靠。
  • 图  1  仿真调幅信号

    图  2  调幅信号循环相关熵谱(Contour图)

    图  3  调幅信号循环相关熵谱局部放大图

    图  4  调幅信号循环相关熵谱3维图

    图  5  广义循环平稳度

    图  6  广义循环平稳度(局部放大)

    图  7  调幅信号循环相关熵谱Contour图(CPD算法)

    图  8  调幅信号循环相关熵谱3维图(CPD算法)

    图  9  调幅信号循环相关熵谱(局部放大图)

    图  10  广义循环平稳度

    图  11  调幅信号循环相关熵谱(Contour图)

    图  12  调幅信号循环相关熵谱3维图(直接算法)

    图  13  调幅信号循环相关熵谱(非对称1)

    图  14  调幅信号循环相关熵谱3维图(非对称1)

    图  15  调幅信号循环相关熵谱(非对称2)

    图  16  调幅信号循环相关熵谱3维图(非对称2)

    图  17  调幅信号循环相关熵谱(非对称1局部放大图)

  • GARDNER W A. The spectral correlation theory of cyclostationary time-series[J]. Signal Processing, 1986, 11(1): 13–36. doi: 10.1016/0165-1684(86)90092-7
    GARDNER W A, NAPOLITANO A, and PAURA L. Cyclostationarity: Half a century of research[J]. Signal Processing, 2006, 86(4): 639–697. doi: 10.1016/j.sigpro.2005.06.016
    NAPOLITANO A. Cyclostationarity: Limits and generalizations[J]. Signal Processing, 2016, 120: 323–347. doi: 10.1016/j.sigpro.2015.09.013
    NAPOLITANO A. Cyclostationarity: New trends and applications[J]. Signal Processing, 2016, 120: 385–408. doi: 10.1016/j.sigpro.2015.09.011
    GARDNER W A and SPOONER C M. Signal interception: Performance advantages of cyclic-feature detectors[J]. IEEE Transactions on Communications, 1992, 40(1): 149–159. doi: 10.1109/26.126716
    GARDNER W A and SPOONER C M. Detection and source location of weak cyclostationary signals: Simplifications of the maximum-likelihood receiver[J]. IEEE Transactions on Communications, 1993, 41(6): 905–916. doi: 10.1109/26.231913
    GELLI G, IZZO L, and PAURA L. Cyclostationarity-based signal detection and source location in non-Gaussian noise[J]. IEEE Transactions on Communications, 1996, 44(3): 368–376. doi: 10.1109/26.486331
    BOUILLAUT L and SIDAHMED M. Cyclostationary approach and bilinear approach: Comparison, applications to early diagnosis for helicopter gearbox and classification method based on HOCS[J]. Mechanical Systems and Signal Processing, 2001, 15(5): 923–943. doi: 10.1006/mssp.2001.1412
    ANTONIADIS I and GLOSSIOTIS G. Cyclostationary analysis of rolling-element bearing vibration signals[J]. Journal of Sound and Vibration, 2001, 248(5): 829–845. doi: 10.1006/jsvi.2001.3815
    邱天爽. 相关熵与循环相关熵信号处理研究进展[J]. 电子与信息学报, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646

    QIU Tianshuang. Development in signal processing based on correntropy and cyclic correntropy[J]. Journal of Electronics &Information Technology, 2020, 42(1): 105–118. doi: 10.11999/JEIT190646
    郭莹, 邱天爽. 基于分数低阶统计量的盲多用户检测算法[J]. 电子学报, 2007, 35(9): 1670–1674. doi: 10.3321/j.issn:0372-2112.2007.09.011

    GUO Ying and QIU Tianshuang. Blind multiuser detector based on FLOS in impulse noise environment[J]. Acta Electronica Sinica, 2007, 35(9): 1670–1674. doi: 10.3321/j.issn:0372-2112.2007.09.011
    MA Xinyu and NIKIAS C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 1996, 44(11): 2669–2687. doi: 10.1109/78.542175
    邱天爽, 王宏禹, 孙永梅. 一种基于分数低阶协方差的自适应EP潜伏期变化检测方法[J]. 电子学报, 2004, 32(1): 91–95. doi: 10.3321/j.issn:0372-2112.2004.01.022

    QIU Tianshuang, WANG Hongyu, and SUN Yongmei. A fractional lower-order covariance based adaptive latency change detection for Evoked Potentials[J]. Acta Electronica Sinica, 2004, 32(1): 91–95. doi: 10.3321/j.issn:0372-2112.2004.01.022
    李辉. 基于分数低阶统计量的频谱分析方法[J]. 天津职业技术师范大学学报, 2019, 29(2): 1–6, 18. doi: 10.19573/j.issn2095-0926.201902001

    LI Hui. Spectrum analysis based on fractional lower order statistics[J]. Journal of Tianjin University of Technology and Education, 2019, 29(2): 1–6, 18. doi: 10.19573/j.issn2095-0926.201902001
    宋爱民, 邱天爽, 佟祉谏. 对称稳定分布的相关熵及其在时间延迟估计上的应用[J]. 电子与信息学报, 2011, 33(2): 494–498. doi: 10.3724/SP.J.1146.2010.00309

    SONG Aimin, QIU Tianshuang, and TONG Zhijian. Correntropy of the symmetric stable distribution and its application to the time delay estimation[J]. Journal of Electronics &Information Technology, 2011, 33(2): 494–498. doi: 10.3724/SP.J.1146.2010.00309
    王鹏, 邱天爽, 任福全, 等. 对称稳定分布噪声下基于广义相关熵的DOA估计新方法[J]. 电子与信息学报, 2016, 38(8): 2007–2013. doi: 10.11999/JEIT151217

    WANG Peng, QIU Tianshuang, REN Fuquan, et al. A novel generalized correntropy based method for direction of arrival estimation in symmetric alpha stable noise environments[J]. Journal of Electronics &Information Technology, 2016, 38(8): 2007–2013. doi: 10.11999/JEIT151217
    YU Ling, QIU Tianshuang, and LUAN Shengyang. Fractional time delay estimation algorithm based on the maximum correntropy criterion and the Lagrange FDF[J]. Signal Processing, 2015, 111: 222–229. doi: 10.1016/j.sigpro.2014.12.018
    吴超, 李雅倩, 张亚茹, 等. 用于表示级特征融合与分类的相关熵融合极限学习机[J]. 电子与信息学报, 2020, 42(2): 386–393. doi: 10.11999/JEIT190186

    WU Chao, LI Yaqian, ZHANG Yaru, et al. Correntropy-based fusion extreme learning machine for representation level feature fusion and classification[J]. Journal of Electronics &Information Technology, 2020, 42(2): 386–393. doi: 10.11999/JEIT190186
    LUAN Shengyang, QIU Tianshuang, ZHU Yongjie, et al. Cyclic correntropy and its spectrum in frequency estimation in the presence of impulsive noise[J]. Signal Processing, 2016, 120: 503–508. doi: 10.1016/j.sigpro.2015.09.023
    FONTES A I R, REGO J B A, MARTINS A D M, et al. Cyclostationary correntropy: Definition and applications[J]. Expert Systems with Applications, 2017, 69: 110–117. doi: 10.1016/j.eswa.2016.10.029
    LIU Tao, QIU Tianshuang, and LUAN Shengyang. Cyclic correntropy: Foundations and theories[J]. IEEE Access, 2018, 6: 34659–34669. doi: 10.1109/ACCESS.2018.2847346
    ROBERTS R S, BROWN W A, and LOOMIS H H. Computationally efficient algorithms for cyclic spectral analysis[J]. IEEE Signal Processing Magazine, 1991, 8(2): 38–49. doi: 10.1109/79.81008
    ANTONI J. Cyclic spectral analysis in practice[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 597–630. doi: 10.1016/j.ymssp.2006.08.007
    ANTONI J, XIN Ge, and HAMZAOUI N. Fast computation of the spectral correlation[J]. Mechanical Systems and Signal Processing, 2017, 92: 248–277. doi: 10.1016/j.ymssp.2017.01.011
    LIU Weifeng, POKHAREL P P, and PRINCIPE J C. Correntropy: A localized similarity measure[C]. The 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, Canada, 2006: 4919–4924. doi: 10.1109/IJCNN.2006.247192.
    SANTAMARIA I, POKHAREL P P, and PRINCIPE J C. Generalized correlation function: Definition, properties, and application to blind equalization[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2187–2197. doi: 10.1109/TSP.2006.872524
    LIU Weifang, POKHAREL P P, and PRINCIPE J C. Correntropy: Properties and applications in non-gaussian signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5286–5298. doi: 10.1109/tsp.2007.896065
    GUNDUZ A and PRINCIPE J C. Correntropy as a novel measure for nonlinearity tests[J]. Signal Processing, 2009, 89(1): 14–23. doi: 10.1016/j.sigpro.2008.07.005
    LI Hui, ZHENG Haiqi, and TANG Liwei. Wigner-ville distribution based on EMD for faults diagnosis of bearing[C]. The 3rd International Conference on Fuzzy Systems and Knowledge Discovery, Xi’an, China, 2006: 803–812. doi: 10.1007/11881599_99.
  • 期刊类型引用(14)

    1. 许振月,杨磊,周雯. 结合STBC或VBLAST的WSN协作传输的性能对比分析. 无线电工程. 2020(12): 1042-1049 . 百度学术
    2. 李军,杨光友,干熊,陈学海,马志艳. 能量高效的事件驱动型大规模农业监测WSNs协作式传输策略. 湖北农业科学. 2017(06): 1155-1160+1168 . 百度学术
    3. 孙文胜,李乐媛. 基于混合译码放大转发的最优中继选择方案. 计算机工程. 2017(11): 76-80+89 . 百度学术
    4. 王超,刘宏立,徐琨. 不同信道下无线传感网络物理层能耗性能分析. 计算机工程与应用. 2016(12): 112-116 . 百度学术
    5. 许晓荣,姚英彪,包建荣,陆宇. 认知WSN中基于能量有效性自适应观测的梯度投影稀疏重构方法. 电子与信息学报. 2014(01): 27-33 . 本站查看
    6. 罗玮. 协作通信无线资源管理的研究和应用. 电子世界. 2014(14): 225-226 . 百度学术
    7. 贾海云,乐永生. 协作分集技术在无线通信中的中继选择问题研究. 电脑知识与技术. 2013(09): 2053-2055 . 百度学术
    8. 李瑞. 计算机软件安全检测技术探讨. 电子技术与软件工程. 2013(11): 40 . 百度学术
    9. 李昌,阮秀凯,胡倩,唐震洲. 一种适用于WMSNs传输机制的信道盲估计方法. 传感技术学报. 2012(05): 659-664 . 百度学术
    10. 于迎新,王钢. 协作分集系统中基于注水算法的功率分配方案研究. 电子与信息学报. 2012(12): 2830-2836 . 本站查看
    11. 季薇,吴鹏悦. 下一代网络的“绿色化”挑战. 微型机与应用. 2012(24): 1-3 . 百度学术
    12. 许晓荣,章坚武,黄爱苹. 基于多节点协作的认知WSN能耗优化算法. 杭州电子科技大学学报. 2011(04): 57-60 . 百度学术
    13. 郑明才,张大方,赵小超. 基于梯度化邻居节点信息的传感器网络性能优化. 计算机应用研究. 2011(04): 1495-1498 . 百度学术
    14. 季薇,郑宝玉. 基于能量有效性的协作节点配置问题研究. 信号处理. 2011(03): 321-327 . 百度学术

    其他类型引用(16)

  • 加载中
图(17)
计量
  • 文章访问数:  884
  • HTML全文浏览量:  663
  • PDF下载量:  88
  • 被引次数: 30
出版历程
  • 收稿日期:  2020-02-21
  • 修回日期:  2021-01-08
  • 网络出版日期:  2021-01-12
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回