UAV Path Planning for AOA-based Source Localization with Distance-Dependent Noises
-
摘要: 该文研究到达角度(AOA)协同定位下无人机路径优化问题。考虑实际AOA量测噪声方差是目标-传感器距离的函数,距离相关噪声特性使得AOA定位难度增加。为了更好地适应量测噪声随距离变化特性,该文提出一种变增益无迹卡尔曼滤波算法。随后,给出了距离相关噪声AOA定位下广义克劳美罗下界(GCRLB)。在此基础上理论分析了无约束最优传感器位置分布和约束条件下最优传感器位置分布。以GCRLB的迹最小化为目标函数建立AOA协同定位下多无人机路径规划问题,采用罚函数和LM算法优化求解,仿真验证了所提算法的有效性。Abstract: An optimal path planning problem is investigated for Angle-Of-Arrival (AOA) source localization using Unmanned Aerial Vehicles (UAVs) equipped with passive sensors. The more realistic model is considered where the variance of AOA measurement noises is a function of the source-to-sensor distances, which complicates AOA-based source localization. A modified Variable Gain Unscented Kalman Filter (VG-UKF)is developed to adapt to distance-dependent variance of AOA measurement noises. The Generalized Cramer-Rao Lower Bound (GCRLB) of AOA localization is calculated. Further, the unconstrained optimal sensor placement and constrained optimal sensor placement are theoretically analyzed. Then a path planning model for UAVs is constructed with minimizing the trace of GCRLB, which is solved optimally with penalty function and LM (Levenberg-Marquardt) algorithm. The effectiveness of the proposed algorithm is illustrated with simulation results.
-
图 4 优化算法[7]下UAV飞行航迹
-
LOIZOU S G and KUMAR V. Biologically inspired bearing-only navigation and tracking[C]. The 2007 46th IEEE Conference on Decision and Control, New Orleans, USA, 2007: 1386–1391. doi: 10.1109/CDC.2007.4435005. GAVISH M and WEISS A J. Performance analysis of bearing-only target location algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(3): 817–828. doi: 10.1109/7.256302 WANG Yue and HO K C. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6524–6535. doi: 10.1109/TWC.2015.2456057 NGUYEN N H and DOĞANCAY K. Improved pseudolinear Kalman filter algorithms for bearings-only target tracking[J]. IEEE Transactions on Signal Processing, 2017, 65(23): 6119–6134. doi: 10.1109/TSP.2017.2749207 JAWAHAR A and RAO S K. Modified polar extended Kalman filter (MP-EKF) for bearings-only target tracking[J]. Indian Journal of Science and Technology, 2016, 9(26): 1–5. doi: 10.17485/ijst/2016/v9i26/90307 BISHOP A N, FIDAN B, ANDERSON B D O, et al. Optimality analysis of sensor-target localization geometries[J]. Automatica, 2010, 46(3): 479–492. doi: 10.1016/j.automatica.2009.12.003 DOGANCAY K. UAV Path planning for passive emitter localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1150–1166. doi: 10.1109/taes.2012.6178054 MORENO-SALINAS D, PASCOAL A, and ARANDA J. Sensor networks for optimal target localization with bearings-only measurements in constrained three-dimensional scenarios[J]. Sensors, 2013, 13(8): 10386–10417. doi: 10.3390/s130810386 HERNANDEZ M. Optimal sensor trajectories in bearings-only tracking[C]. The 7th International Conference on Information Fusion (FUSION 2004), Stockholm, Sweden, 2004: 893–900. XU Sheng and DOĞANCAY K. Optimal sensor placement for 3-D angle-of-arrival target localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1196–1211. doi: 10.1109/TAES.2017.2667999 RAO S S. Engineering Optimization: Theory and Practice[M]. 4th ed. Hoboken, USA: John Wiley & Sons, 2009. doi: 10.1002/9780470549124. CORBETS J B and LANGELAAN J W. Parameterized trajectories for target localization using small and micro unmanned aerial vehicles[C]. 2008 American Control Conference, Seattle, USA, 2008: 672–677. DOGANCAY K. Online optimization of receiver trajectories for scan-based emitter localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1117–1125. doi: 10.1109/TAES.2007.4383601 VAN TREES H L. Detection, Estimation, and Modulation Theory: Detection, Estimation, and Linear Modulation Theory[M]. Hoboken, USA: John Wiley & Sons, 2001. doi: 10.1002/0471221082. CASSIOLI D, WIN M Z, and MOLISCH A F. The ultra-wide bandwidth indoor channel: From statistical model to simulations[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(6): 1247–1257. doi: 10.1109/jsac.2002.801228 朱子尧, 韩树平, 郭正东, 等. 乘性噪声背景下基于非线性渐消滤波的单信标测距定位算法[J]. 电子与信息学报, 2019, 41(1): 165–171. doi: 10.11999/JEIT180239ZHU Ziyao, HAN Shuping, GUO Zhengdong, et al. Single beacon location algorithm based on nonlinear fading filter under multiplicative noise background[J]. Journal of Electronics &Information Technology, 2019, 41(1): 165–171. doi: 10.11999/JEIT180239 HAMDOLLAHZADEH M, AMIRI R, and BEHNIA F. Optimal sensor placement for multi-source AOA localisation with distance-dependent noise model[J]. IET Radar, Sonar & Navigation, 2019, 13(6): 881–891. doi: 10.1049/iet-rsn.2018.5426 WANG Weijia, BAI Peng, ZHOU Yu, et al. Optimal configuration analysis of AOA localization and optimal heading angles generation method for UAV swarms[J]. IEEE Access, 2019, 7: 70117–70129. doi: 10.1109/ACCESS.2019.2918299 CHEN Liang. A modified Levenberg–Marquardt method with line search for nonlinear equations[J]. Computational Optimization and Applications, 2016, 65(5): 753–779. doi: 10.1007/s10589-016-9852-y