高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

距离相关噪声AOA协同定位下无人机路径优化方法

左燕 刘雪娇 彭冬亮

左燕, 刘雪娇, 彭冬亮. 距离相关噪声AOA协同定位下无人机路径优化方法[J]. 电子与信息学报, 2021, 43(4): 1192-1198. doi: 10.11999/JEIT200078
引用本文: 左燕, 刘雪娇, 彭冬亮. 距离相关噪声AOA协同定位下无人机路径优化方法[J]. 电子与信息学报, 2021, 43(4): 1192-1198. doi: 10.11999/JEIT200078
Yan ZUO, Xuejiao LIU, Dongliang PENG. UAV Path Planning for AOA-based Source Localization with Distance-Dependent Noises[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1192-1198. doi: 10.11999/JEIT200078
Citation: Yan ZUO, Xuejiao LIU, Dongliang PENG. UAV Path Planning for AOA-based Source Localization with Distance-Dependent Noises[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1192-1198. doi: 10.11999/JEIT200078

距离相关噪声AOA协同定位下无人机路径优化方法

doi: 10.11999/JEIT200078
基金项目: 国家自然科学基金(61673146, 61771028, 61973102),电子信息控制重点实验室基金(6142105200102)
详细信息
    作者简介:

    左燕:女,1980年生,副教授,研究方向为无源定位、目标跟踪、传感器管理

    刘雪娇:女,1995年生,硕士生,研究方向为无源定位、目标跟踪、传感器管理

    彭冬亮:男,1977年生,教授,博士生导师,研究方向为目标跟踪、智能信息处理和信息融合

    通讯作者:

    左燕 leftswallow@163.com

  • 中图分类号: TN958.97

UAV Path Planning for AOA-based Source Localization with Distance-Dependent Noises

Funds: The National Natural Science Foundation of China (61673146, 61771028, 61973102), Fund of Science and Technology on Electronic Information Control Laboratory (6142105200102)
  • 摘要: 该文研究到达角度(AOA)协同定位下无人机路径优化问题。考虑实际AOA量测噪声方差是目标-传感器距离的函数,距离相关噪声特性使得AOA定位难度增加。为了更好地适应量测噪声随距离变化特性,该文提出一种变增益无迹卡尔曼滤波算法。随后,给出了距离相关噪声AOA定位下广义克劳美罗下界(GCRLB)。在此基础上理论分析了无约束最优传感器位置分布和约束条件下最优传感器位置分布。以GCRLB的迹最小化为目标函数建立AOA协同定位下多无人机路径规划问题,采用罚函数和LM算法优化求解,仿真验证了所提算法的有效性。
  • 图  1  距离相关噪声AOA协同定位框架

    图  2  不同AOA跟踪算法下估计误差MSE

    图  3  直线飞行策略下UAV飞行航迹

    图  4  优化算法[7]下UAV飞行航迹

    图  5  本文算法下UAV飞行航迹

    图  6  不同算法下定位误差MSE

    图  7  不同传感器个数下定位误差MSE

    图  8  不同测角精度传感器协同定位下UAV飞行航迹

  • LOIZOU S G and KUMAR V. Biologically inspired bearing-only navigation and tracking[C]. The 2007 46th IEEE Conference on Decision and Control, New Orleans, USA, 2007: 1386–1391. doi: 10.1109/CDC.2007.4435005.
    GAVISH M and WEISS A J. Performance analysis of bearing-only target location algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(3): 817–828. doi: 10.1109/7.256302
    WANG Yue and HO K C. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6524–6535. doi: 10.1109/TWC.2015.2456057
    NGUYEN N H and DOĞANCAY K. Improved pseudolinear Kalman filter algorithms for bearings-only target tracking[J]. IEEE Transactions on Signal Processing, 2017, 65(23): 6119–6134. doi: 10.1109/TSP.2017.2749207
    JAWAHAR A and RAO S K. Modified polar extended Kalman filter (MP-EKF) for bearings-only target tracking[J]. Indian Journal of Science and Technology, 2016, 9(26): 1–5. doi: 10.17485/ijst/2016/v9i26/90307
    BISHOP A N, FIDAN B, ANDERSON B D O, et al. Optimality analysis of sensor-target localization geometries[J]. Automatica, 2010, 46(3): 479–492. doi: 10.1016/j.automatica.2009.12.003
    DOGANCAY K. UAV Path planning for passive emitter localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1150–1166. doi: 10.1109/taes.2012.6178054
    MORENO-SALINAS D, PASCOAL A, and ARANDA J. Sensor networks for optimal target localization with bearings-only measurements in constrained three-dimensional scenarios[J]. Sensors, 2013, 13(8): 10386–10417. doi: 10.3390/s130810386
    HERNANDEZ M. Optimal sensor trajectories in bearings-only tracking[C]. The 7th International Conference on Information Fusion (FUSION 2004), Stockholm, Sweden, 2004: 893–900.
    XU Sheng and DOĞANCAY K. Optimal sensor placement for 3-D angle-of-arrival target localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1196–1211. doi: 10.1109/TAES.2017.2667999
    RAO S S. Engineering Optimization: Theory and Practice[M]. 4th ed. Hoboken, USA: John Wiley & Sons, 2009. doi: 10.1002/9780470549124.
    CORBETS J B and LANGELAAN J W. Parameterized trajectories for target localization using small and micro unmanned aerial vehicles[C]. 2008 American Control Conference, Seattle, USA, 2008: 672–677.
    DOGANCAY K. Online optimization of receiver trajectories for scan-based emitter localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1117–1125. doi: 10.1109/TAES.2007.4383601
    VAN TREES H L. Detection, Estimation, and Modulation Theory: Detection, Estimation, and Linear Modulation Theory[M]. Hoboken, USA: John Wiley & Sons, 2001. doi: 10.1002/0471221082.
    CASSIOLI D, WIN M Z, and MOLISCH A F. The ultra-wide bandwidth indoor channel: From statistical model to simulations[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(6): 1247–1257. doi: 10.1109/jsac.2002.801228
    朱子尧, 韩树平, 郭正东, 等. 乘性噪声背景下基于非线性渐消滤波的单信标测距定位算法[J]. 电子与信息学报, 2019, 41(1): 165–171. doi: 10.11999/JEIT180239

    ZHU Ziyao, HAN Shuping, GUO Zhengdong, et al. Single beacon location algorithm based on nonlinear fading filter under multiplicative noise background[J]. Journal of Electronics &Information Technology, 2019, 41(1): 165–171. doi: 10.11999/JEIT180239
    HAMDOLLAHZADEH M, AMIRI R, and BEHNIA F. Optimal sensor placement for multi-source AOA localisation with distance-dependent noise model[J]. IET Radar, Sonar & Navigation, 2019, 13(6): 881–891. doi: 10.1049/iet-rsn.2018.5426
    WANG Weijia, BAI Peng, ZHOU Yu, et al. Optimal configuration analysis of AOA localization and optimal heading angles generation method for UAV swarms[J]. IEEE Access, 2019, 7: 70117–70129. doi: 10.1109/ACCESS.2019.2918299
    CHEN Liang. A modified Levenberg–Marquardt method with line search for nonlinear equations[J]. Computational Optimization and Applications, 2016, 65(5): 753–779. doi: 10.1007/s10589-016-9852-y
  • 加载中
图(8)
计量
  • 文章访问数:  1054
  • HTML全文浏览量:  868
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-19
  • 修回日期:  2020-06-01
  • 网络出版日期:  2020-12-11
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回