高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交多载波降噪差分混沌键控通信系统

贺利芳 吴雪霜 张天骐

贺利芳, 吴雪霜, 张天骐. 正交多载波降噪差分混沌键控通信系统[J]. 电子与信息学报, 2021, 43(4): 1120-1128. doi: 10.11999/JEIT200068
引用本文: 贺利芳, 吴雪霜, 张天骐. 正交多载波降噪差分混沌键控通信系统[J]. 电子与信息学报, 2021, 43(4): 1120-1128. doi: 10.11999/JEIT200068
Lifang HE, Xueshuang WU, Tianqi ZHANG. Quadrature Multicarrier Noise Reduction Differential Chaos Shift Keying System[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1120-1128. doi: 10.11999/JEIT200068
Citation: Lifang HE, Xueshuang WU, Tianqi ZHANG. Quadrature Multicarrier Noise Reduction Differential Chaos Shift Keying System[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1120-1128. doi: 10.11999/JEIT200068

正交多载波降噪差分混沌键控通信系统

doi: 10.11999/JEIT200068
基金项目: 国家自然科学基金(61771085, 61371164),重庆市教育委员会科研项目(KJ1600407, KJQN201900601)
详细信息
    作者简介:

    贺利芳:女,1979年生,硕士,副教授,研究方向为混沌保密通信、微弱信号检测

    吴雪霜:女,1996年生,硕士生,研究方向为混沌保密通信

    张天骐:男,1971年生,博士后,教授,研究方向为扩频信号的盲处理、语音信号处理、神经网络实现以及信号的同步处理

    通讯作者:

    吴雪霜 3319154122@qq.com

  • 中图分类号: TN911.3

Quadrature Multicarrier Noise Reduction Differential Chaos Shift Keying System

Funds: The National Natural Science Foundation of China (61771085, 61371164), The Research Project of Chongqing Educational Commission (KJ1600407, KJQN201900601)
  • 摘要: 为解决多载波差分混沌移位键控(MC-DCSK)系统传输速率低和误码性能差的缺点,该文提出一种正交多载波降噪差分混沌移位键控(QMC-NR-DCSK)系统。在发送端,预定义载波用于发送参考信号,剩余M-1个不同中心频率的载波及其经正交调制技术后得到的频率相同但相位正交的载波都用于传输信息信号,此外,通过进一步引入Hilbert变换,将系统的频带利用率和传输速率提升为MC-DCSK系统的4倍。在接收端引入滑动平均滤波器的降噪操作降低了噪声的方差,从而改善了系统误码性能。推导了QMC-NR-DCSK系统在加性高斯白噪声(AWGN)信道和多径瑞利衰落(RFC)信道下的比特误码率公式并进行了仿真。仿真结果和理论分析表明:QMC-NR-DCSK系统能有效提升传输速率、带宽效率和误码性能,为该系统应用于多载波无线通信提供理论参考。
  • 图  1  QMC-NR-DCSK系统发送机结构

    图  2  $s(t)$的功率谱密度

    图  3  QMC-NR-DCSK接收机结构图

    图  4  多径RFC信道模型

    图  5  两种不同信道下,M变化对BER的影响

    图  6  两种不同信道下,P变化对BER的影响

    图  7  两种不同信道下,不同系统误码性能对比图

    图  8  BER随多径路数L变化的曲线

    图  9  BER随${\tau _2}$变化的曲线

    表  1  几种多载波系统间TR, EE和EB的对比

    系统名称传输速率${\rm{TR}}$能量效率${\rm{EE}}$带宽效率${\rm{BE}}$
    MC-DCSK${ {(M - 1)} / \beta}$${ {M - 1} / \beta}$${{(M - 1)} / {(M\beta (1 + \alpha ))}}$
    QMC-DCSK${ {2(M - 1)} / \beta}$${{(M - 1)} / {(M - {1 / 2})}}$${{2(M - 1)} / {(M\beta (1 + \alpha ))}}$
    SA-MCDCSK${ {(M - N)} / \beta}$${{(M - N)} / M}$${{(M - N)} / {(M\beta (1 + \alpha ))}}$
    QMC-NR-DCSK$4{ {(M - 1)} / \beta}$${{(M - 1)} / {(M - {3 / 4})}}$${{4(M - 1)} / {(M\beta (1 + \alpha ))}}$
    下载: 导出CSV

    表  2  多径RFC信道参数取值表

    L$E\left[ {\alpha _l^2} \right]$${\tau _l}$
    L=21/2, 1/20, 1
    L=31/3, 1/3, 1/30, 1, 2
    L=41/4, 1/4, 1/4, 1/40, 1, 2, 3
    L=51/5, 1/5, 1/5, 1/5, 1/50, 1, 2, 3, 4
    下载: 导出CSV
  • QUYEN N X and KYAMAKYA K. Chaos-based Digital Communication Systems with Low Data-rate Wireless Applications[M]. KYAMAKYA K, MATHIS W, STOOP R, et al. Recent Advances in Nonlinear Dynamics and Synchronization. Cham, Germany: Springer, 2017: 239–269. doi: 10.1007/978-3-319-58996-1_11.
    KADDOUM G. Wireless chaos-based communication systems: A comprehensive survey[J]. IEEE Access, 2016, 4: 2621–2648. doi: 10.1109/access.2016.2572730
    ÇIÇEK S, KOCAMAZ U E, and UYAROGLU Y. Secure chaotic communication with Jerk chaotic system using sliding mode control method and its real circuit implementation[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2019, 43(3): 687–698. doi: 10.1007/s40998-019-00184-9
    GALIAS Z and MAGGIO G M. Quadrature chaos-shift keying: Theory and performance analysis[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, 48(12): 1510–1519. doi: 10.1109/TCSI.2001.972858
    张刚, 赵畅畅, 张天骐. 短参考正交多用户差分混沌键控方案的性能分析[J]. 电子与信息学报, 2019, 41(9): 2055–2062. doi: 10.11999/JEIT181038

    ZHANG Gang, ZHAO Changchang, and ZHANG Tianqi. Performance analysis of short reference orthogonal multiuser differential chaotic shift keying scheme[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2055–2062. doi: 10.11999/JEIT181038
    NGUYEN X Q. On the study of a quadrature DCSK modulation scheme for cognitive radio[J]. International Journal of Bifurcation and Chaos, 2017, 27(9): 1750135. doi: 10.1142/S0218127417501358
    LYU Yibo, WANG Lin, CAI Guofa, et al. Iterative receiver for M-ary DCSK systems[J]. IEEE Transactions on Communications, 2015, 63(11): 3929–3936. doi: 10.1109/TCOMM.2015.2425877
    张琳, 徐位凯, 王琳, 等. 码复用差分混沌键控性能分析与同步算法[J]. 重庆邮电大学学报: 自然科学版, 2016, 28(3): 330–336. doi: 10.3979/j.issn.1673-825X.2016.03.008

    ZHANG Lin, XU Weikai, WANG Lin, et al. Performance analysis and synchronization algorithm for CS-DCSK system[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2016, 28(3): 330–336. doi: 10.3979/j.issn.1673-825X.2016.03.008
    WANG Shaonan, LIU Yingjie, and MA Weijiao. Design of a novel frequency division scheme for DCSK chaos communication system[C]. 2017 3rd International Conference on Information Management (ICIM), Chengdu, China, 2017: 317–321. doi: 10.1109/INFOMAN.2017.7950400.
    张刚, 陈和祥, 张天骐. 多用户降噪差分混沌键控通信方案[J]. 电子与信息学报, 2019, 41(2): 362–368. doi: 10.11999/JEIT171173

    ZHANG Gang, CHEN Hexiang, and ZHANG Tianqi. A multiuser noise reduction differential chaos shift keying system[J]. Journal of Electronics &Information Technology, 2019, 41(2): 362–368. doi: 10.11999/JEIT171173
    KADDOUM G, RICHARDSON F D, and GAGNON F. Design and analysis of a multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2013, 61(8): 3281–3291. doi: 10.1109/TCOMM.2013.071013.130225
    BAO Jiyu, XU Weikai, WANG Lin, et al. Performance analysis and sub-carriers power allocation for MC-QCSK[C]. 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 2015: 1–5. doi: 10.1109/WCSP.2015.7341173.
    QUYEN N X and PHAM C K. Quadrature multi-carrier DCSK: A high-efficiency scheme for radio communications[C]. 2017 International Conference on Advanced Technologies for Communications (ATC), Quy Nhon, Vietnam, 2017: 186–191. doi: 10.1109/ATC.2017.8167614.
    YANG Hua, JIANG Guoping, TANG W K S, et al. Multi-carrier differential chaos shift keying system with subcarriers allocation for noise reduction[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(11): 1733–1737. doi: 10.1109/TCSII.2017.2752754
    CAI Guofa, WANG Lin, and CHEN Guanrong. Capacity of the non-coherent DCSK system over rayleigh fading channel[J]. IET Communications, 2016, 10(18): 2663–2669. doi: 10.1049/iet-com.2016.0487
    MANDAL S, BANERJEE S. Analysis and CMOS implementation of a chaos-based communication system[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(9): 1708–1722. doi: 10.1109/TCSI.2004.834482
    LONG N H, QUYEN N X, and VAN YEM V. Design of an improved multi-carrier DCSK system for digital communications[C]. 2017 International Conference on Recent Advances in Signal Processing, Telecommunications & Computing, Da Nang, Vietnam, 2017: 211–216. doi: 10.1109/SIGTELCOM.2017.7849824.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  2121
  • HTML全文浏览量:  555
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 修回日期:  2020-07-07
  • 网络出版日期:  2020-07-22
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回