5G Cyberspace Security Game
-
摘要: 随着移动通信技术的快速发展和第5代移动通信(5G)网络的商用,网络空间安全问题日益凸显。该文针对5G网络空间安全中对抗博弈问题进行探讨,从静态博弈、动态博弈、基于演化和图论的博弈等基础模型以及窃听与窃听对抗、干扰与干扰对抗等典型对抗种类方面,对当前国内外网络空间安全对抗博弈的研究进行分析和归纳,并进一步阐述5G网络空间安全对抗博弈研究中潜在的基础理论和对抗规律研究方向,分析5G环境下安全对抗博弈研究的必要性及面临的挑战,为5G网络空间安全攻防对抗研究提供新视角。Abstract: With the rapid development of mobile communication technologies and the commercial use of 5G, cybersecurity issues are increasingly prominent. For revealing the essence of operation in 5G cybersecurity, current researches on cybersecurity confrontation and game are analyzed from the aspects of basic models including static game, dynamic game, evolutionary game, and graph-based game, as well as the typical confrontation issues including eavesdropping and anti-eavesdropping and jamming and anti-jamming. Furthermore, some potential research directions are also set forth in establishing 5G cybersecurity confrontation theory and general law. Finally, the necessity and challenges of security and game research in 5G networks are discussed, so as to provide new sights for the research of confrontation in 5G cyberspace.
-
Key words:
- 5G mobile communication /
- Cybersecurity /
- Confrontation /
- Game
-
1. 引言
组网雷达系统由于其雷达站点分布广泛、信号体制、工作频段和极化方式多样等特点,具备信息融合能力,显著增强了雷达系统的抗干扰能力,使传统电子对抗手段难以有效压制组网雷达[1,2]。而随着分布式协同技术与无人机技术的快速发展,无人机因其小巧灵活,成本低廉等优势在电子战中的应用越来越广泛。因此,利用无人机集群对组网雷达实施航迹欺骗已成为未来电子战的重要策略之一[3]。
目前,关于无人机集群对组网雷达航迹欺骗策略的研究,取得了诸多成果。吕炫[4]考虑了雷达站址误差与无人机预设位置误差对虚假航迹的影响,提出了两种复合干扰方法,将压制干扰分别与航迹欺骗和角度欺骗相结合,与单一干扰方法相比,干扰效果大幅提高。郭文元[5]提出了复合噪声干扰技术,并引入了利用遗传蚁群融合算法寻找最佳干扰资源分配方案的航迹欺骗策略,增强了全局寻优能力。陈保亮[6]提出了一种在限定虚假目标轨迹条件下求解多无人机运动规律和协同策略的方法,该方法采用了分段拟合的思想,具有较好的实用性。Fan等人[7]研究了虚假航迹与组网雷达的空间几何关系,在简化无人机运动模型的基础上,探索了多无人机协同分组优化方法。丁宸聪等人[8]提出了基于改进鲸鱼算法的多无人机协同欺骗干扰技术,其算法效率、精度及全局寻优能力均有所提高。刘宇蕊等人[9]针对使用传统粒子群算法规划无人机飞行任务时求解效率低下的问题,提出了一种基于改进粒子群优化算法的多无人机协同欺骗干扰技术,该方法具备更快的收敛速度和更强的全局寻优能力,对利用无人机协同干扰组网雷达具有一定的参考价值。李松等人[10]利用无人机搭载基站对系统进行辅助计算,以最小化系统时间均方误差为目标,联合优化无人机轨迹、去噪因子以及地面传感器发射功率,提出了一种有效的迭代求解算法。赵艳丽等人[11]提出了对空间探测雷达网形成高逼真多机协同航迹欺骗技术,有效提高了欺骗干扰效率。
上述文献中关于无人机集群对组网雷达实施航迹欺骗的研究,绝大部分是在假设不存在误差的情况下展开的。然而,在实际航迹欺骗过程中,侦测组网雷达位置会引入量测误差,无人机集群编队飞行和调制干扰信号时也会引入随机误差,因此,虚假航迹和真实航迹会存在一定的统计特性差异[12]。部分学者针对误差存在情况下的航迹欺骗问题开展了研究。闻雯等人[13]分析了数字射频存储器(Digital Radio Frequency Memory, DRFM)精度受限而存在时延误差时对组网雷达进行有效航迹欺骗的边界条件,总结了转发时延误差对欺骗干扰效果的影响规律。Liu等人[14]提出了一种存在无人机抖动误差和雷达站址误差时的虚假航迹偏差补偿方法,该方法能有效降低虚假航迹识别率。王国宏等人[15]则研究了雷达站址误差对航迹欺骗干扰的影响。
总的来说,针对多种误差同时存在情况下的航迹欺骗研究仍存在一些不足,因此,有必要对3种误差同时存在的航迹欺骗问题开展深入研究。本文推导了在雷达站址误差、无人机抖动误差及转发时延误差3种误差同时存在时,无人机集群成功欺骗组网雷达的边界条件,总结了上述误差对航迹欺骗效果的影响规律。数值分析结果表明,当3种误差同时存在时,推导结果可以有效评估无人机集群对组网雷达的欺骗能力。
2. 无人机集群航迹欺骗原理
2.1 转发式航迹欺骗干扰
航迹欺骗干扰分为转发式航迹欺骗干扰和生成式航迹欺骗干扰,本文基于转发式航迹欺骗干扰进行误差分析。转发式航迹欺骗干扰是指无人机利用DRFM对截获的雷达信号进行处理,并在延迟(或提前)一定时间后重新发射出去,使雷达接收到一个或多个与真实目标距离不符的回波信号,使其误认为目标比实际位置更远(或更近),从而实现假目标或多假目标的欺骗效果。在此技术上,多个连续的假目标点可以形成一段虚假航迹,利用无人机集群之间的深度协同还可以实现更高级别的虚假航迹欺骗干扰。图1为转发式航迹欺骗干扰示意图。
2.2 组网雷达同源检验原理
雷达距离分辨率是衡量雷达性能的指标之一,由有效脉冲信号带宽Bw决定,有效带宽越宽,距离分辨率越好。组网雷达的空间分辨单元对于评估航迹欺骗效果至关重要,其定义为各雷达对应距离分辨率的重叠区域。图2为空间分辨单元示意图。
在组网雷达系统中,多个雷达站点相互协同,能够显著提高对真实目标的探测精度和抗干扰能力,并基于同源检验思想进行假目标的识别与剔除。在同一坐标系下,不同雷达测量到的真实目标的空间状态是一致的,而由单部干扰机产生的虚假目标的空间状态因其相对各部雷达的空间位置不同而存在差异,组网雷达通过信息融合后,能够利用真假目标的空间状态差异对假目标进行识别和剔除[16]。
为了对抗组网雷达的同源检验,无人机集群对组网雷达进行分布式协同干扰,通过控制各无人机的飞行轨迹,进而生成虚假航迹,实现对组网雷达的有效欺骗。图3为无人机集群对组网雷达实施航迹欺骗示意图。
2.3 对组网雷达进行航迹欺骗的条件
理想情况下,无人机集群生成的虚假目标点应聚焦于同一处,使组网雷达各个节点测得的虚假目标空间状态一致。然而,实际情况中无人机集群生成的虚假目标点是分散的。因此,对组网雷达进行有效航迹欺骗需要满足一定条件。无人机C、雷达Ri和雷达Rj和虚假目标点A和B的空间位置关系如图4所示。
无人机C与雷达Ri和雷达Rj的距离分别表示为ρi, ρj,与虚假目标点A和B的距离均为Δd/2,雷达Ri和雷达Rj的距离分辨率分别为δi, δj。
由于组网雷达系统具备同源检验能力,只有当无人机生成的虚假目标点A和B同处于一个空间分辨单元中时,无人机才能满足成功对组网雷达进行航迹欺骗的条件。由组网雷达空间分辨单元的定义可知,若式(1)中的两个不等式
|ARi−BRj|≤δi|ARi−BRj|≤δj} (1) 均成立,则无人机能够同时对两部雷达实施航迹欺骗。式中,δi, δj分别表示雷达Ri和雷达Rj的距离分辨率。
3. 针对组网雷达的航迹欺骗综合误差分析
无人机集群在对组网雷达进行航迹欺骗过程中,利用DRFM对截获的雷达信号进行模数转换时,会引入一定的量化误差,此外,DRFM使用的时钟还可能存在漂移或者不稳定性,导致采样时刻与实际时刻之间存在误差,这些误差最终会造成转发截获信号时的时延误差。无人机受气流、传感器噪声和控制系统不稳定等影响会产生抖动误差。多径效应、系统误差以及信号处理精度低等问题也会一定程度上影响雷达的定位精度,进而造成雷达站址误差。在上述3种误差叠加影响下,无人机集群实际生成的虚假航迹点将可能偏离预设的虚假航迹点,使得航迹欺骗效果恶化。因此,开展针对组网雷达航迹欺骗的综合误差分析,将有助于评估和改善航迹欺骗效果。
3.1 航迹欺骗综合误差模型
假设空间中分布着N部雷达,分别表示为R1, R2, ···, RN,其距离分辨率分别表示为δ1, δ2, ···, δN, C表示预设的虚假目标点。假设一架无人机欺骗干扰一部雷达,则需要有N架无人机,分别表示为A1, A2, ···, AN,且每架无人机均位于预设虚假目标点和对应雷达的连线上。雷达站址误差分别表示为er1, er2, ···, erN,无人机抖动误差分别表示为ej1, ej2,···, ejN,DRFM转发时延误差分别表示为et1, et2,···,etN。由雷达站址误差造成预设虚假目标点偏离后的位置分别表示为K1, K2,···,KN,由无人机抖动误差造成虚假目标点2次偏离后的位置分别表示为P1, P2,···,PN,由DFRM转发时延误差造成虚假目标点3次偏离后的位置分别表示为Q1, Q2,···,QN,在这些误差叠加影响下,实际生成的虚假目标点将会严重偏离预设位置。各架无人机与预计生成的虚假目标点之间的距离分别表示为d1/d122,d2/d222,···, dN/dN22,与其对应干扰雷达之间的距离分别表示为ρ1, ρ2,···, ρN。为简化计算和分析,不失一般性地,本文以两架无人机干扰两部雷达为例来进行理论推导和定性分析,如图5所示。
3.2 航迹欺骗综合误差分析
对图5中所示场景进行分析可知,雷达由站址误差导致其实际位置R′1, R′2位于以R1, R2为圆心,以er1, er2为半径的圆上。为了简化该模型,假设无人机集群位于远场区域,且站址误差er1, er2远小于无人机与其干扰雷达之间的距离ρ1, ρ2,即ρ1≫er1, ρ2≫er2, ···, ρN≫erN。不妨令ρ1=ρ′1,ρ2=ρ′2, ···, ρN=ρ′N,则由相似三角形关系可得
¯K1C = d1er12ρ1¯K2C = d2er22ρ2} (2) 无人机由抖动误差导致其位置在以A1, A2为球心,以ej1, ej2为半径的球面上运动。根据几何关系可知,以无人机A1为例,其实际生成的虚假目标点在以K1为中心,长轴为ρ1+d1/d122ρ1ej1,短轴为ej1的椭球面上,即
¯P1K1 = ρ1+d1/d122ρ1ej1¯P2K2 = ρ2+d2/d222ρ2ej2} (3) 转发时延和距离之间需满足
t=dc (4) 式中,t表示时延;c表示光速;d表示距离。
无人机A1, A2由DRFM转发时延误差et1, et2导致最终实际生成的虚假目标点Q1, Q2位于R′1P1, R′2P2的延长线上,结合式(4)可得
¯Q1P1 = Δd12=cet12¯Q2P2 = Δd22=cet22} (5) 式中,Δd1和Δd2分别表示无人机A1, A2的欺骗距离误差。
由组网雷达航迹欺骗的条件可知,当实际生成的虚假目标点Q1, Q2之间的距离¯Q1Q2小于组网雷达的最小距离分辨率δmin,即满足式(6)所示不等式时,由两部雷达组成的雷达网将同时被欺骗
¯Q1Q2≤¯Q1P1 + ¯Q2P2 + ¯P1K1 + ¯P2K2 + ¯K1C + ¯K2C≤δmin (6) 在N架无人机欺骗N部雷达组成的雷达网场中,先分析成功欺骗R1的条件,而成功欺骗R1需要满足式(7)所示不等式组
|cet12| + |cet22| + |ρ1+d1/d122ρ1ej1| + |ρ2+d2/d222ρ2ej2|+|d1er12ρ1|+|d2er22ρ2|≤δ1|cet12| + |cet32| + |ρ1+d1/d122ρ1ej1| + |ρ3+d3/d322ρ3ej3|+|d1er12ρ1|+|d3er32ρ3|≤δ1⋯|cet12| + |cetN2| + |ρ1+d1/d122ρ1ej1| + |ρN+dN/dN22ρNejN|+|d1er12ρ1|+|dNerN2ρN|≤δ1|cet22| + |cet32| + |ρ2+d2/d222ρ2ej2| + |ρ3+d3/d322ρ3ej3|+|d2er22ρ2|+|d3er32ρ3|≤δ1|cet22| + |cet42| + |ρ2+d2/d222ρ2ej2| + |ρ4+d4/d422ρ4ej4|+|d2er22ρ2|+|d4er42ρ4|≤δ1⋯|cetN−12| + |cetN2| + |ρN−1+dN−1/dN−122ρN−1ejN−1| + |ρN+dN/dN22ρNejN|+|dN−1erN−12ρN−1|+|dNerN2ρN|≤δ1} (7) 根据不等式的性质,将式(7)中的N(N−1)2个不等式同向相加,可得
|cet12| + ⋯ + |cetN2| + |ρ1+d1/d122ρ1ej1| + ⋯ + |ρN+dN/dN22ρNejN|+|d1er12ρ1| + ⋯+|dNerN2ρN|≤δ1 (8) 由式(7)和式(8),可得
|cet1| + |2ρ1+d1ρ1ej1|+|d1er1ρ1|≤δ1|cet2| + |2ρ2+d2ρ2ej2|+|d2er2ρ2|≤δ1⋯|cetN| + |2ρN+dNρNejN|+|dNerNρN|≤δ1} (9) 因此,无人机集群成功对组网雷达实施航迹欺骗的充分不必要条件为
|cetk| + |(2 + dkρk)ejk|+|dkerkρk|≤δmin,k∈N+ (10) 式中,c表示光速;dk表示第k架无人机对其干扰雷达的欺骗距离;ρk表示第k架无人机与其干扰雷达的距离;etk表示第k架无人机搭载DRFM的转发延时误差;ejk表示第k架无人机的抖动误差;erk表示第k个雷达的站址误差;δmin表示组网雷达的最小距离分辨率;N+表示正整数集。
从式(10)可以看出,由雷达站址误差和无人机抖动误差引起的虚假航迹点偏移量受无人机与其干扰雷达的距离ρk和无人机对其干扰雷达的欺骗距离dk影响,ρk越小,dk越大,则虚假航迹点偏移量越大,反之越小,而由转发时延误差引起的虚假航迹点偏移量固定不变。当上述3种误差引起的虚假航迹点偏移量相互叠加后的总偏移量小于组网雷达的最小距离分辨率δmin时,能够对组网雷达成功实施航迹欺骗,若超过式(10)范围,则无人机集群将无法对组网雷达进行有效的航迹欺骗,还需要依靠其他技术手段进一步评估欺骗效果。
4. 数值仿真与分析
假设组网雷达由3部雷达构成,其最小分辨率表示为δmin=min{δR1,δR2,δR3},雷达R1的站址误差er1为y轴方向上的误差,雷达R2的站址误差er2为x轴方向上的误差,雷达R3的站址误差er3为绕x轴60∘方向上的误差;无人机A1的抖动误差ej1为方位角30∘俯仰角60∘上的误差,无人机A2的抖动误差ej2为方位角120∘、俯仰角225∘上的误差,无人机A3的抖动误差ej3为方位角45∘、俯仰角135∘上的误差;无人机A1对雷达R1的时延误差表示为et1,无人机A2对雷达R2的时延误差表示为et2,无人机A3对雷达R3的时延误差表示为et3。雷达、无人机以及预设虚假目标点的坐标参数设置如表1所示。
表 1 坐标参数设置名称 位置(km) 雷达R1 (0.00,0.00,0.00) 雷达R2 (8.00,6.00,0.00) 雷达R3 (14.00,20.00,0.00) 无人机A1 (4.25,10.20,17.00) 无人机A2 (5.75,10.50,15.00) 无人机A3 (8.15,14.80,13.00) 虚假目标点C (5.00,12.00,20.00) 由对组网雷达航迹欺骗的条件可知,当式(11)成立时,无人机集群可以成功欺骗组网雷达
¯Q1Q2≤δmin¯Q1Q3≤δmin¯Q2Q3≤δmin} (11) 在保证欺骗效果的前提下,当组网雷达的最小分辨率和3种误差中的2种已知时,由式(10)可以计算出另外一种误差的最大范围;当3种误差均已知时,可计算出组网雷达最小分辨率的下限,如表2所示。
表 2 组网雷达误差和最小分辨率计算表雷达站址误差(m) 无人机抖动误差(m) 转发时延误差(μs) 最小分辨率(m) er1≤4250.0 ej1=0.0 et1=0.0 δmin=1500.0 er2≤2250.0 ej2=0.0 et2=0.0 er3≤1392.9 ej3=0.0 et3=0.0 er1=0.0 ej1≤637.5 et1=0.0 δmin=1500.0 er2=0.0 ej2≤562.5 et2=0.0 er3=0.0 ej3≤487.5 et3=0.0 er1=0.0 ej1=0.0 et1≤5.0 δmin=1500.0 er2=0.0 ej2=0.0 et2≤5.0 er3=0.0 ej3=0.0 et3≤5.0 er1≤700.0 ej1=150.0 et1=3.0 δmin=1500.0 er2≤725.0 ej2=100.0 et2=2.5 er3≤692.9 ej3=50.0 et3=2.0 er1=1200.0 ej1≤75.0 et1=3.0 δmin=1500.0 er2=800.0 ej2≤81.3 et2=2.5 er3=600.0 ej3≤82.5 et3=2.0 er1=1200.0 ej1=150.0 et1≤2.4 δmin=1500.0 er2=800.0 ej2=100.0 et2≤2.3 er3=600.0 ej3=50.0 et3≤2.3 er1=1200.0 ej1=150.0 et1=3.0 δmin≥1400.0 er2=800.0 ej2=100.0 et2=2.5 er3=600.0 ej3=50.0 et3=2.0 组网雷达的最小距离分辨率设为
1500.0 m。从表2可以看出,当3类误差单独存在时,无人机集群进行航迹欺骗所允许的误差范围较大,对组网雷达实施航迹欺骗的成功率较大。其中任何一种误差都不能超过该误差单独存在时的上限,即er1≤4250.0 m,er2≤2250.0 m,er3≤1392.9 m,ej1≤637.5 m,ej2≤562.5 m,ej3≤487.5 m,et1≤5.0 μs,et2≤5.0 μs,et3≤5.0 μs。将3类误差中的两种给定,便可得到另外一类误差的范围。从表2可以看出,这些误差对于虚假目标点偏离程度的影响不同,无人机与干扰的雷达之间距离越大,欺骗距离越短,这两种误差对航迹欺骗效果的影响越小;而组网雷达最小分辨率越大,转发时延误差对航迹欺骗效果的影响越小。此外,在3类误差均已知的情况下,求出组网雷达最小分辨率的下限为1400.0 m。假设在两种误差大小和方向已知的情况下,由式(10)计算,对能够成功欺骗组网雷达的第3种误差取值范围进行数值分析,以验证表2中计算结果的可靠性与准确性,结果分别如图6–图8所示。
组网雷达最小距离分辨率δmin=
1500.0 m时,由图6、图7、图8可以看出,给定雷达站址误差1200.0 m, 800.0 m, 600.0 m和无人机抖动误差150.0 m, 100.0 m, 50.0 m,将各无人机搭载的DRFM时延误差控制在2.4 μs,2.3 μs,2.3 μs内,实际生成虚假目标点之间的距离始终小于最小分辨率1500.0 m,则可以成功欺骗组网雷达。给定时延误差3.0 μs,2.5 μs,2.0 μs和无人机抖动误差150.0 m, 100.0 m, 50.0 m,将雷达站址误差控制在700.0 m, 725.0 m, 692.9 m内,则可以成功欺骗组网雷达。给定时延误差3.0 μs,2.5 μs,2.0 μs和雷达站址误差1200.0 m, 800.0 m, 600.0 m,将无人机抖动误差控制在75.0 m, 81.3 m, 82.5 m内,则可以成功欺骗组网雷达。综合考虑上述3种误差,本文通过数值分析发现,当这些误差被控制在由式(10)所计算的参数范围内时,无人机集群能够有效地对组网雷达进行航迹欺骗干扰,超出这个范围以后,航迹欺骗效果无法得到保证。若能获取无人机与量测所得雷达位置间的距离、欺骗距离及组网雷达的最小距离分辨率,则可以计算得到3种误差之间的耦合关系。3种误差按照该耦合关系取值叠加以后不超过组网雷达的最小分辨率,才能保证无人机集群能够成功欺骗组网雷达。由以上仿真结果可知,当任意两种误差给定后,可以计算得到另外一种误差的取值范围,若该误差不超过此范围,则生成虚假目标点间的距离始终小于组网雷达的最小距离分辨率,此时,无人机集群可以成功欺骗组网雷达。另外,当组网雷达的最小距离分辨率一定时,雷达站址误差和无人机抖动误差对组网雷达欺骗效果的影响与雷达位置、无人机位置以及预设虚假目标位置有关,而时延误差对航迹欺骗效果的影响仅取决于无人机搭载的DRFM精度。
5. 结束语
本文在雷达站址误差、无人机抖动误差和时延误差均存在的情况下,由上述3类误差与航迹点偏离程度之间的几何关系,推导出成功欺骗组网雷达时3种误差的边界条件,经过分析得出了雷达站址误差和无人机抖动误差对虚假目标点偏离程度的影响与雷达位置、无人机位置以及预设虚假目标位置有关,而时延误差与这些参量无关的结论。通过数值分析,验证了模型假设和公式推导的有效性与准确性,对实际应用中改善针对组网雷达的航迹欺骗效果具有一定指导意义。
-
表 1 典型的网络空间安全对抗博弈模型
-
International Telecommunications Union. Framework and overall objectives of the future development of IMT for 2020 and beyond[R]. ITU-R, 2015. CUI Qimei, SHI Yulong, TAO Xiaofeng, et al. A unified protocol stack solution for LTE and WLAN in future mobile converged networks[J]. IEEE Wireless Communications, 2014, 21(6): 24–33. doi: 10.1109/MWC.2014.7000968 WU Huici, TAO Xiaofeng, ZHANG Ning, et al. Cooperative UAV cluster-assisted terrestrial cellular networks for ubiquitous coverage[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 2045–2058. doi: 10.1109/JSAC.2018.2864418 LORENZ C, HOCK D, SCHERER J, et al. An SDN/NFV-enabled enterprise network architecture offering fine-grained security policy enforcement[J]. IEEE Communications Magazine, 2017, 55(3): 217–223. doi: 10.1109/MCOM.2017.1600414CM ORDONEZ-LUCENA J, AMEIGEIRAS P, LOPEZ D, et al. Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges[J]. IEEE Communications Magazine, 2017, 55(5): 80–87. doi: 10.1109/MCOM.2017.1600935 XU Xiaodong, ZHANG Huixin, DAI Xun, et al. SDN based next generation mobile network with service slicing and trials[J]. China Communications, 2014, 11(2): 65–77. doi: 10.1109/CC.2014.6821738 唐伦, 周钰, 杨友超, 等. 5G网络切片场景中基于预测的虚拟网络功能动态部署算法[J]. 电子与信息学报, 2019, 41(9): 2071–2078. doi: 10.11999/JEIT180894TANG Lun, ZHOU Yu, YANG Youchao, et al. Virtual network function dynamic deployment algorithm based on prediction for 5G network slicing[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2071–2078. doi: 10.11999/JEIT180894 RUPPRECHT D, DABROWSKI A, HOLZ T, et al. On security research towards future mobile network generations[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2518–2542. doi: 10.1109/COMST.2018.2820728 DUAN Xiaoyu and WANG Xianbin. Authentication handover and privacy protection in 5G HetNets using software-defined networking[J]. IEEE Communications Magazine, 2015, 53(4): 28–35. doi: 10.1109/MCOM.2015.7081072 LU Xiao, NIYATO D, JIANG Hai, et al. Cyber insurance for heterogeneous wireless networks[J]. IEEE Communications Magazine, 2018, 56(6): 21–27. doi: 10.1109/MCOM.2018.1700504 季新生, 徐水灵, 刘文彦, 等. 一种面向安全的虚拟网络功能动态异构调度方法[J]. 电子与信息学报, 2019, 41(10): 2435–2441. doi: 10.11999/JEIT181130JI Xinsheng, XU Shuiling, LIU Wenyan, et al. A security-oriented dynamic and heterogeneous scheduling method for virtual network function[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2435–2441. doi: 10.11999/JEIT181130 ITU WP 5D. Minimum requirements related to technical performance for IMT-2020 radio interface(s)[R]. ITU-R, 2017. 冯登国, 徐静, 兰晓. 5G移动通信网络安全研究[J]. 软件学报, 2018, 29(6): 1813–1825. doi: 10.13328/j.cnki.jos.005547FENG Dengguo, XU Jing, and LAN Xiao. Study on 5G mobile communication network security[J]. Journal of Software, 2018, 29(6): 1813–1825. doi: 10.13328/j.cnki.jos.005547 CAO Jin, MA Maode, LI Hui, et al. A survey on security aspects for 3GPP 5G networks[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 170–195. doi: 10.1109/COMST.2019.2951818 KHAN R, KUMAR P, JAYAKODY D N K, et al. A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 196–248. doi: 10.1109/COMST.2019.2933899 PONNIAH J, HU Y C, and KUMAR P R. A system-theoretic clean slate approach to provably secure Ad-Hoc wireless networking[J]. IEEE Transactions on Control of Network Systems, 2016, 3(2): 206–217. doi: 10.1109/TCNS.2015.2428309 ALPCAN T and BASAR T. Network Security: A Decision and Game-theoretic Approach[M]. Cambridge: Cambridge University Press, 2010: 37–313. 杨义先, 钮心忻. 安全通论[M]. 北京: 电子工业出版社, 2018: 39–173.YANG Yixian and NIU Xinxin. General Theory of Information Security[M]. Beijing: Publishing House of Electronic Industry, 2018: 39–173. DURKOTA K, LISÝ V, KIEKINTVELD C, et al. Case studies of network defense with attack graph games[J]. IEEE Intelligent Systems, 2016, 31(5): 24–30. doi: 10.1109/MIS.2016.74 SANJAB A and SAAD W. Data injection attacks on smart grids with multiple adversaries: A game-theoretic perspective[J]. IEEE Transactions on Smart Grid, 2016, 7(4): 2038–2049. doi: 10.1109/TSG.2016.2550218 WANG Kun, YUAN Li, MIYAZAKI T, et al. Jamming and eavesdropping defense in green cyber-physical transportation systems using a stackelberg game[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4232–4242. doi: 10.1109/TII.2018.2841033 AHMED I K and FAPOJUWO A O. Stackelberg equilibria of an anti-jamming game in cooperative cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(1): 121–134. doi: 10.1109/TCCN.2017.2769121 JIA Luliang, XU Yuhua, SUN Youming, et al. Stackelberg game approaches for anti-jamming defence in wireless networks[J]. IEEE Wireless Communications, 2018, 25(6): 120–128. doi: 10.1109/MWC.2017.1700363 LI Yuzhe, SHI Dawei, and CHEN Tongwen. False data injection attacks on networked control systems: A stackelberg game analysis[J]. IEEE Transactions on Automatic Control, 2018, 63(10): 3503–3509. doi: 10.1109/TAC.2018.2798817 HAN Yi, ALPCAN T, CHAN J, et al. A game theoretical approach to defend against co-resident attacks in cloud computing: Preventing co-residence using semi-supervised learning[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(3): 556–570. doi: 10.1109/TIFS.2015.2505680 LA Q D, QUEK T Q S, LEE J, et al. Deceptive attack and defense game in honeypot-enabled networks for the internet of things[J]. IEEE Internet of Things Journal, 2016, 3(6): 1025–2035. doi: 10.1109/JIOT.2016.2547994 WANG Chunlei, MIAO Qing, and DAI Yiqi. Network survivability analysis based on stochastic game model[C]. The 4th International Conference on Multimedia Information Networking and Security, Nanjing, China, 2014: 199–204. doi: 10.1109/MINES.2012.147. WEI Longfei, SARWAT A F, SAAD W, et al. Stochastic games for power grid protection against coordinated cyber-physical attacks[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 684–694. doi: 10.1109/TSG.2016.2561266 王元卓, 林闯, 程学旗, 等. 基于随机博弈模型的网络攻防量化分析方法[J]. 计算机学报, 2010, 33(9): 1748–1762. doi: 10.3724/SP.J.1016.2010.01748WANG Yuanzhuo, LIN Chuang, CHENG Xueqi, et al. Analysis for network attack-defense based on stochastic game model[J]. Chinese Journal of Computers, 2010, 33(9): 1748–1762. doi: 10.3724/SP.J.1016.2010.01748 DORASZELSKI U and ESCOBAR J F. A theory of regular markov perfect equilibria in dynamic stochastic games: Genericity, stability, and purification[J]. Theoretical Economics, 2010, 5(2): 369–402. doi: 10.3982/TE632 XIAO Liang, XU Dongjin, XIE Caixia, et al. Cloud storage defense against advanced persistent threats: A prospect theoretic study[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(3): 534–544. doi: 10.1109/JSAC.2017.2659418 ZHANG Rui, ZHU Quanyan, and HAYEL Y. A Bi-level game approach to attack-aware cyber insurance of computer networks[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(3): 779–794. doi: 10.1109/JSAC.2017.2672378 MIN Minghui, XIAO Liang, XIE Caixia, et al. Defense against advanced persistent threats in dynamic cloud storage: A colonel blotto game approach[J]. IEEE Internet of Things Journal, 2018, 5(6): 4250–4261. doi: 10.1109/JIOT.2018.2844878 LASZKA A, HORVATH G, FELEGYHAZI M, et al. FlipThem: Modeling Targeted Attacks with Flipit for Multiple Resources[M]. POOVENDRAN R and SAAD W. Decision and Game Theory for Security. Cham: Springer, 2014: 175–194. doi: 10.1007/978-3-319-12601-2_10. WANG Chong, HOU Yunhe, and TEN C W. Determination of Nash equilibrium based on plausible attack-defense dynamics[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3670–3680. doi: 10.1109/TPWRS.2016.2635156 HUANG Shirui, ZHANG Hengwei, WANG Jindong, et al. Markov differential game for network defense decision-making method[J]. IEEE Access, 2018, 6: 39621–39634. doi: 10.1109/ACCESS.2018.2848242 ZHANG Hengwei, JIANG Lü, HUANG Shirui, et al. Attack-defense differential game model for network defense strategy selection[J], IEEE Access, 2018, 7: 50618–50629. doi: 10.1109/ACCESS.2018.2880214. GARCIA E, CASBEER D W, and PACHTER M. Design and analysis of state-feedback optimal strategies for the differential game of active defense[J]. IEEE Transactions on Automatic Control, 2019, 64(2): 553–568. doi: 10.1109/TAC.2018.2828088 SHEN Shigen, LI Yuanjie, XU Hongyun, et al. Signaling game based strategy of intrusion detection in wireless sensor networks[J]. Computers & Mathematics with Applications, 2011, 62(6): 2404–2416. doi: 10.1016/j.camwa.2011.07.027 MALEKI H, VALIZADEH S, KOCH W, et al. Markov modeling of moving target defense games[C]. The 2016 ACM Workshop on Moving Target Defense, Vienna, Austria, 2016: 81–92. doi: 10.1145/2995272.2995273. LEI Cheng, MA Duohe, and ZHANG Hongqi. Optimal strategy selection for moving target defense based on Markov game[J]. IEEE Access, 2017, 5: 156–169. doi: 10.1109/ACCESS.2016.2633983 SEDJELMACI S A H, BRAHMI I H, ANSARI N, et al. Cyber security framework for vehicular network based on a hierarchical game[J]. IEEE Transactions on Emerging Topics in Computing, 2019. doi: 10.1109/TETC.2018.2890476 BALKENBORG D and SCHLAG K H. On the interpretation of evolutionary stable sets in symmetric and asymmetric games[R]. Mimeo, Bonn University Economics Department, 1994. FIONDELLA L, RAHMAN A, LOWNES N, et al. Defense of high-speed rail with an evolutionary algorithm guided by game theory[J]. IEEE Transactions on Reliability, 2016, 65(2): 674–686. doi: 10.1109/TR.2015.2491602 HU Hao, LIU Yuling, ZHANG Hongqi, et al. Optimal network defense strategy selection based on incomplete information evolutionary game[J]. IEEE Access, 2018, 6: 29806–29821. doi: 10.1109/ACCESS.2018.2841885 HUANG Jianming, ZHANG Hengwei, and WANG Jindong. Markov evolutionary games for network defense strategy selection[J]. IEEE Access, 2017, 5: 19505–19516. doi: 10.1109/ACCESS.2017.2753278 MIEHLING E, RASOULI M, and TENEKETZIS D. Optimal defense policies for partially observable spreading processes on Bayesian attack graphs[C]. The 2nd ACM Workshop on Moving Target Defense, Colorado, USA, 2015: 67–76. 陈小军, 方滨兴, 谭庆丰, 等. 基于概率攻击图的内部攻击意图推断算法研究[J]. 计算机学报, 2014, 37(1): 62–72.CHEN Xiaojun, FANG Binxing, TAN Qingfeng, et al. Inferring attack intent of malicious insider based on probabilistic attack graph model[J]. Chinese Journal of Computers, 2014, 37(1): 62–72. FUDENBERG D and TIROLE J. Game Theory[M]. Cambridge: Massachusetts Institute of Technology Press, 1991: 65–203. ABASS A A A, XIAO Liang, MANDAYAM N B, et al. Evolutionary game theoretic analysis of advanced persistent threats against cloud storage[J]. IEEE Access, 2017, 5: 8482–8491. doi: 10.1109/ACCESS.2017.2691326 BHARATHI S, KUMAR D, and RAM D. Defence against responsive and non-responsive jamming attack in cognitive radio networks: An evolutionary game theoretical approach[J]. The Journal of Engineering, 2018, 2018(2): 68–75. doi: 10.1049/joe.2017.0285 HAN Zhu, MARINA N, DEBBAH M, et al. Physical layer security game: How to date a girl with her boyfriend on the same table[C]. The 1st ICST International Conference on Game Theory for Networks, Istanbul, Turkey, 2009: 287–294. doi: 10.1109/GAMENETS.2009.5137412. ZHANG Rongqing, SONG Lingyang, HAN Zhu, et al. Physical layer security for two-way untrusted relaying with friendly jammers[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3693–3704. doi: 10.1109/TVT.2012.2209692 CHU Zheng, CUMANAN K, DING Zhiguo, et al. Secrecy rate optimizations for a MIMO secrecy channel with a cooperative jammer[J]. IEEE Transactions on Vehicular Technology, 2015, 64(5): 1833–1847. doi: 10.1109/TVT.2014.2336092 WU Huici, TAO Xiaofeng, HAN Zhu, et al. Secure transmission in MISOME wiretap channel with multiple assisting jammers: Maximum secrecy rate and optimal power allocation[J]. IEEE Transactions on Communications, 2017, 65(2): 775–789. doi: 10.1109/TCOMM.2016.2636288 FANG He, XU Li, and WANG Xianbin. Coordinated multiple-relays based physical-layer security improvement: A single-leader multiple-followers stackelberg game scheme[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(1): 197–209. doi: 10.1109/TIFS.2017.2746001 FANG He, XU Li, ZOU Yulong, et al. Three-stage stackelberg game for defending against full-duplex active eavesdropping attacks in cooperative communication[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10788–10799. doi: 10.1109/TVT.2018.2868900 WANG Wei, TEH K C, LI K H, et al. On the impact of adaptive eavesdroppers in multi-antenna cellular networks[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(2): 269–279. doi: 10.1109/TIFS.2017.2746010 LUO Yijie, FENG Zhibin, JIANG Han, et al. Game-theoretic learning approaches for secure D2D communications against full-duplex active eavesdropper[J]. IEEE Access, 2019, 7: 41324–41335. doi: 10.1109/ACCESS.2019.2906845 LI Meng, ZHANG Yanru, WANG Li, et al. Incentive design for collaborative jamming using contract theory in physical layer security[C]. 2016 IEEE/CIC International Conference on Communications in China, Chengdu, China, 2016: 1–6, doi: 10.1109/ICCChina.2016.7636873. HAN Zhu, MARINA N, DEBBAH M, et al. Improved wireless secrecy rate using distributed auction theory[C]. The 5th International Conference on Mobile Ad-hoc and Sensor Networks, Fujian, China, 2009: 442–447. doi: 10.1109/MSN.2009.73. ZHANG Rongqing, SONG Lingyang, HAN Zhu, et al. Improve physical layer security in cooperative wireless network using distributed auction games[C]. 2011 IEEE Conference on Computer Communications Workshops, Shanghai, China, 2011: 18–23. doi: 10.1109/INFCOMW.2011.5928805. KHAN A S, RAHULAMATHAVAN Y, BASUTLI B, et al. Blockchain-based distributive auction for relay-assisted secure communications[J]. IEEE Access, 2019, 7: 95555–95568. doi: 10.1109/ACCESS.2019.2929136 SAAD W, HAN Zhu, BASAR T, et al. Physical layer security: Coalitional games for distributed cooperation[C]. The 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Seoul, South Korea, 2009: 1–8. WANG Kun, YUAN Li, MIYAZAKI T, et al. Strategic antieavesdropping game for physical layer security in wireless cooperative networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10): 9448–9457. doi: 10.1109/TVT.2017.2703305 WANG Kun, YUAN Li, MIYAZAKI T, et al. Antieavesdropping with selfish jamming in wireless networks: A Bertrand game approach[J]. IEEE Transactions on Vehicular Technology, 2017, 66(7): 6268–6279. doi: 10.1109/TVT.2016.2639827 YUKSEL M, LIU Xi, and ERKIP E. A secure communication game with a relay helping the eavesdropper[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 818–830. doi: 10.1109/TIFS.2011.2125956 ALSABA Y, LEOW C Y, and ABDUL RAHIM S K. A zero-sum game approach for non-orthogonal multiple access systems: Legitimate eavesdropper case[J]. IEEE Access, 2018, 6: 58764–58773. doi: 10.1109/ACCESS.2018.2874215 SAGDUYU Y E, BERRY R, and EPHREMIDES A. MAC games for distributed wireless network security with incomplete information of selfish and malicious user types[C]. The 2009 International Conference on Game Theory for Networks, Istanbul, Turkey, 2009: 130–139. doi: 10.1109/GAMENETS.2009.5137394. TANG Ling, CHEN Hao, and LI Qianmu. Social tie based cooperative jamming for physical layer security[J]. IEEE Communications Letters, 2015, 19(10): 1790–1793. doi: 10.1109/LCOMM.2015.2462826 LÜ Shichao, XIAO Liang, HU Qing, et al. Anti-jamming power control game in unmanned aerial vehicle networks[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8253988. LU Xiaozhen, XU Dongjin, XIAO Liang, et al. Anti-jamming communication game for UAV-aided VANETs[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8253987. -