高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平稳和连续小波变换融合算法的心电信号P, T波检测

熊鹏 刘学朋 杜海曼 刘明 侯增广 王洪瑞 刘秀玲

熊鹏, 刘学朋, 杜海曼, 刘明, 侯增广, 王洪瑞, 刘秀玲. 基于平稳和连续小波变换融合算法的心电信号P, T波检测[J]. 电子与信息学报, 2021, 43(5): 1441-1447. doi: 10.11999/JEIT200049
引用本文: 熊鹏, 刘学朋, 杜海曼, 刘明, 侯增广, 王洪瑞, 刘秀玲. 基于平稳和连续小波变换融合算法的心电信号P, T波检测[J]. 电子与信息学报, 2021, 43(5): 1441-1447. doi: 10.11999/JEIT200049
Peng XIONG, Xuepeng LIU, Haiman DU, Ming LIU, Zengguang HOU, Hongrui WANG, Xiuling LIU. Detection of ECG Signal P and T Wave Based on Stationary and Continuous Wavelet Transform Fusion[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1441-1447. doi: 10.11999/JEIT200049
Citation: Peng XIONG, Xuepeng LIU, Haiman DU, Ming LIU, Zengguang HOU, Hongrui WANG, Xiuling LIU. Detection of ECG Signal P and T Wave Based on Stationary and Continuous Wavelet Transform Fusion[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1441-1447. doi: 10.11999/JEIT200049

基于平稳和连续小波变换融合算法的心电信号P, T波检测

doi: 10.11999/JEIT200049
基金项目: 国家科技部国家重点研发计划(2017YFB1401200),国家自然科学基金(61673158, 61703133),河北省自然科学基金(F2018201070),河北省青年拔尖人才项目(BJ2019044)
详细信息
    作者简介:

    熊鹏:女,1986年生,博士,讲师,研究方向为模式识别和生物信号处理

    刘学朋:男,1996年生,硕士生,研究方向为生物医学心电信号处理

    杜海曼:女,1989年生,硕士,实验师,研究方向为生物医学信号处理

    刘明:男,1972年生,博士,副教授,研究方向为模式识别和心电信号处理

    侯增广:男,1969年生,博士,研究员,研究方向为智能控制和模式识别

    王洪瑞:男,1956年生,博士,教授,研究方向为智能控制和模式识别

    刘秀玲:女,1977年生,博士,教授,研究方向为生物医学成像和信号处理

    通讯作者:

    王洪瑞 hongrui@hbu.edu

  • 中图分类号: TN911.7; R540.41

Detection of ECG Signal P and T Wave Based on Stationary and Continuous Wavelet Transform Fusion

Funds: The National Key R&D Program of China (2017YFB1401200), The National Natrual Science Fundation of China (61673158, 61703133), The Natural Science Foundation of Hebei Province (F2018201070), The Hebei Young Talent Project (BJ2019044)
  • 摘要: P, T波的检测在临床上是心血管疾病诊断的重要依据。由于其波形能量低、形态复杂,极易受到噪声干扰,导致现有检测算法精度仍有待提高。该文提出平稳和连续小波变换融合算法检测P, T波,利用连续小波变换的多尺度信息,获取心电图(ECG)信号中P, T波主要成分,融合其平稳小波对P, T波候选段进行平滑处理,消除波形中锯齿状毛刺对峰值点检测的影响,最后对P, T波过零点进行时移修正,保证过零点还原到原始信号过程中能够准确对应其峰值点,从而提高P, T波检测精度。该文算法在MIT-BIH arrhythmic数据库上进行验证,最终P波的误差率、敏感度、正确预测度达到:0.23%, 99.85%, 99.90%;T波的误差率、敏感度、正确预测度达到0.27%, 99.85%, 99.87%。
  • 图  1  P, T波检测流程图

    图  2  信号平滑处理结果

    图  3  信号时移修正结果

    表  1  频率分布(Hz)

    尺度频带(Hz)
    s=2190~180
    s=2245~90
    s=2322.5~45
    s=245.76~22.25
    s=255.625~11.25
    下载: 导出CSV

    表  2  P, T波统计结果

    $N$${F_{\rm{N}}}$${F_{\rm{P}}}$${R_{\rm{d}}}$${e_{\rm{r}}}(\% )$${S_{\rm{e}}}(\% )$${P_{\rm{p}}}(\% )$
    P6950410363693880.2399.8599.90
    T6950410386693150.2799.8599.87
    下载: 导出CSV

    表  3  方法对比

    方法参数${P_{{\rm{peak}}}}$${T_{{\rm{peak}}}}$
    本文方法Beats6950469504
    Se99.8599.85
    P+99.9099.87
    Elgendi等人[4]Beats2170221702
    Se98.0599.86
    P+97.1199.65
    Peimankar等人[7]Beats761834
    Se97.6997.71
    P+90.8496.51
    Yochum等人[9]Beats
    Se99.0699.17
    P+83.2284.46
    Dev Sharma等人[10]Beats67320
    Se97.01
    P+99.61
    下载: 导出CSV
  • [1] MAGNAN J W, GORODESKI E Z, JOHNSON V M, et al. P wave duration is associated with cardiovascular and all-cause mortality outcomes: The national health and nutrition examination survey[J]. Heart Rhythm, 2011, 8(1): 93–100. doi: 10.1016/j.hrthm.2010.09.020
    [2] AMORIM P, MORAES T, FAZANARO D, et al. Shearlet and contourlet transforms for analysis of electrocardiogram signals[J]. Computer Methods and Programs in Biomedicine, 2018, 161: 125–132. doi: 10.1016/j.cmpb.2018.04.021
    [3] 季虎, 孙即祥, 王春光. 基于小波变换的自适应QRS-T对消P波检测算法[J]. 电子与信息学报, 2007, 29(8): 1868–1871. doi: 10.3724/SP.J.1146.2006.00117

    JI Hu, SUN Jixiang, and WANG Chunguang. An adaptive QRS-T cancellation based on wavelet transform for P-wave detection[J]. Journal of Electronics &Information Technology, 2007, 29(8): 1868–1871. doi: 10.3724/SP.J.1146.2006.00117
    [4] ELGENDI M, MEO M, and ABBOTT D. A proof-of-concept study: Simple and effective detection of P and T waves in arrhythmic ECG signals[J]. Bioengineering, 2016, 3(4): 26. doi: 10.3390/bioengineering3040026
    [5] BECCHETTI C and NERI A. Medical Instrument Design and Development: From Requirements to Market Placements[M]. Hoboken: Wiley, 2013.
    [6] KORS J A and VAN HERPEN G. Computer analysis of the electrocardiogram[M]. MACFARLANE P W, VAN OOSTEROM A, PAHLM O, et al. Comprehensive Electrocardiology. London: Springer, 2010: 1721–1765. doi: 10.1007/978-1-84882-046-3_37.
    [7] PEIMANKAR A and PUTHUSSERYPADY S. DENS-ECG: A deep learning approach for ECG signal delineation[J]. Expert Systems with Applications, 2020, 165: 113911.
    [8] YANG Dandan, WANG Lixin, HU Wenbin, et al. Singularity detection in FOG-based pavement data by wavelet transform[C]. The 25th International Conference on Optical Fiber Sensors, Jeju, Korea, 2017. doi: 10.1117/12.2265514.
    [9] YOCHUM M, RENAUD C, and JACQUIR S. Automatic detection of P, QRS and T patterns in 12 leads ECG signal based on CWT[J]. Biomedical Signal Processing and Control, 2016, 25: 46–52. doi: 10.1016/j.bspc.2015.10.011
    [10] DEV SHARMA L and SUNKARIA R K. Novel T-wave detection technique with minimal processing and RR-interval based enhanced efficiency[J]. Cardiovascular Engineering and Technology, 2019, 10(2): 367–379. doi: 10.1007/s13239-019-00415-4
    [11] SAHOO S, KANUNGO B, BEHERA S, et al. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities[J]. Measurement, 2017, 108: 55–66. doi: 10.1016/j.measurement.2017.05.022
    [12] KUMAR A, KOMARAGIRI R, and KUMAR M. Heart rate monitoring and therapeutic devices: A wavelet transform based approach for the modeling and classification of congestive heart failure[J]. ISA Transactions, 2018, 79: 239–250. doi: 10.1016/j.isatra.2018.05.003
    [13] SAIVEENA K, GUPTA P, AMARNATH M, et al. Characterization of ECG signals using multiscale approach[C]. 2012 International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 2012. doi: 10.1109/SPCOM.2012.6289998.
    [14] MOODY G B and MARK R G. The MIT-BIH Arrhythmia Database on CD-ROM and software for use with it[C]. 1990 Proceedings Computers in Cardiology, Chicago, USA, 1990. doi: 10.1109/CIC.1990.144205.
    [15] CLIFFORD G D, AZUAJE F, and MCSHARRY P. Advanced Methods and Tools for ECG Data Analysis[M]. 685 Canton St. Norwood, MA, USA: Artech House, Inc., 2006.
    [16] FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2005, 27(8): 861–874.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  1172
  • HTML全文浏览量:  585
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-11-27
  • 网络出版日期:  2020-12-05
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回