高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于似然函数的双曲调频信号参数估计快速算法

马碧云 元达鹏 刘娇蛟

马碧云, 元达鹏, 刘娇蛟. 基于似然函数的双曲调频信号参数估计快速算法[J]. 电子与信息学报, 2021, 43(5): 1228-1234. doi: 10.11999/JEIT200044
引用本文: 马碧云, 元达鹏, 刘娇蛟. 基于似然函数的双曲调频信号参数估计快速算法[J]. 电子与信息学报, 2021, 43(5): 1228-1234. doi: 10.11999/JEIT200044
Biyun MA, Dapeng YUAN, Jiaojiao LIU. Fast Algorithm for Parameter Estimation of Hyperbolic Frequency Modulation Signals Based on Likelihood Function[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1228-1234. doi: 10.11999/JEIT200044
Citation: Biyun MA, Dapeng YUAN, Jiaojiao LIU. Fast Algorithm for Parameter Estimation of Hyperbolic Frequency Modulation Signals Based on Likelihood Function[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1228-1234. doi: 10.11999/JEIT200044

基于似然函数的双曲调频信号参数估计快速算法

doi: 10.11999/JEIT200044
基金项目: 广东省自然资源厅广东省海洋经济发展专项基金(粤自然资合[2020]009号),国家自然科学基金(61302056,61401158),华南理工大学中央高校基本科研业务费专项资金(2017MS047)
详细信息
    作者简介:

    马碧云:女,1982年生,副教授,主要研究方向为超声检测、无线携能通信研究

    通讯作者:

    刘娇蛟 jjliu@scut.edu.cn

  • 中图分类号: TN911.7

Fast Algorithm for Parameter Estimation of Hyperbolic Frequency Modulation Signals Based on Likelihood Function

Funds: The Key Program of Marine Economy Development, Department of Natural Resource of Guangdong Province under Grant (YZRZH[2020]009), The National Natural Science Foundation of China (61302056, 61401158), The Basic Research Business Expenses of Central Universities of South China University of Technology (2017MS047)
  • 摘要: 相较于线性调频(LFM)信号,双曲调频(HFM)信号因具有良好的脉冲压缩性能和多普勒不变性,被广泛用于雷达侦查、水声探测等多普勒影响严重的场景中,其中HFM信号的参数估计问题尤为重要。有鉴于此,该文提出一种基于似然函数的HFM信号参数估计快速算法。文中首先推导出HFM信号的Cramer-Rao下界作为参数估计的性能评估标准;然后基于高斯随机噪声,构建了HFM信号的似然函数,并结合数据向量化的特点提出一种改进的适应度函数,最后利用全局最优引导人工蜂群(GABC)算法对该适应度函数进行极值寻优,从而实现HFM信号的参数估计;通过蒙特卡洛仿真证明了该方法在信噪比为3 dB以上时,HFM信号的参数估计结果的均方误差更逼近Cramer-Rao下界,且运算量约是原来的1/3,在保证估计精度的同时提高算法收敛速度。
  • 图  1  不同适应度函数的2维遍历结果

    图  2  不同方法下估计参数的均方误差与Cramer-Rao下界

    图  3  基于不同适应度函数的GABC算法收敛速度

    表  1  不同方法的时间复杂度

    方法时间复杂度
    最大似然估计$O\left( {\displaystyle\prod\nolimits_{j = 1}^D {\frac{ {\left( { {u_j} - {l_j} } \right)} }{ { {p_j} } } } } \right)$
    GA算法$O\left( {({C_{{\rm{GA}}}} - 2)({N_{{\rm{GA}}}} + 1){T_{{\rm{fit}}}}} \right)$
    ABC算法$O\left( {{C_{{\rm{ABC}}}}{N_{{\rm{ABC}}}}{T_{{\rm{fit}}}}} \right)$
    GABC算法$O\left( {{C_{{\rm{GABC}}}}{N_{{\rm{GABC}}}}{T_{{\rm{fit}}}}} \right)$
    下载: 导出CSV
  • [1] 刘会杰, 高新海, 郭汝江. 一种低副瓣无混叠的线性调频信号时频分析方法[J]. 电子与信息学报, 2019, 41(11): 2614–2622. doi: 10.11999/JEIT181190

    LIU Huijie, GAO Xinhai, and GUO Rujiang. A time-frequency analysis method for linear frequency modulation signal with low sidelobe and nonaliasing property[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2614–2622. doi: 10.11999/JEIT181190
    [2] MENG Qingsong, SHAO Gaoping, and WANG Bin. Identification and parameter estimation of underwater LFM signals under ɑ -stable distribution noise[C]. The 8th International Conference on Electronics Information and Emergency Communication, Beijing, China, 2018: 190–193. doi: 10.1109/ICEIEC.2018.8473539.
    [3] 周宝亮. 分布式相参雷达LFM宽带去斜参数估计方法[J]. 电子与信息学报, 2020, 42(7): 1566–1572. doi: 10.11999/JEIT190398

    ZHOU Baoliang. Distributed coherent radar LFM wideband stretch parameter estimation method[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1566–1572. doi: 10.11999/JEIT190398
    [4] GUO Yong and YANG Lidong. Method for parameter estimation of LFM signal and its application[J]. IET Signal Processing, 2019, 13(5): 538–543. doi: 10.1049/iet-spr.2018.5435
    [5] LIU Bing and FU Ping. Parameter estimation of LFM signal with narrowband jamming based on CS[C]. 2010 First International Conference on Pervasive Computing, Signal Processing and Applications, Harbin, China, 2010: 487–490. doi: 10.1109/PCSPA.2010.123.
    [6] YANG J and SARKAR T K. Doppler-invariant property of hyperbolic frequency modulated waveforms[J]. Microwave and Optical Technology Letters, 2006, 48(6): 1174–1179. doi: 10.1002/mop.21573
    [7] SUMAN J V and SEVENTLINE J B. Separation of HFM and NLFM signals for radar using fractional Fourier transform[C]. International Conference on Communication and Network Technologies, Sivakasi, India, 2014: 193–197. doi: 10.1109/CNT.2014.7062753.
    [8] 林聪仁, 原玉婷, 孙海信, 等. 双曲调频信号的级联原子库参数估计[J]. 哈尔滨工程大学学报, 2016, 37(4): 625–628. doi: 10.11990/jheu.201501025

    LIN Congren, YUAN Yuting, SUN Haixin, et al. Estimating parameters of hyperbolic modulation frequency signal based on cascade dictionary[J]. Journal of Harbin Engineering University, 2016, 37(4): 625–628. doi: 10.11990/jheu.201501025
    [9] 赵砚博. 宽带水声信道参数估计及应用[D]. [博士论文], 华南理工大学, 2016.

    ZHAO Yanbo. Parameter estimation and applications for wideband underwater acoustic channels[D]. [Ph. D. dissertation], South China University of Technology, 2016.
    [10] KAY S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. Upper Saddle River, USA: Prentice-Hall, Inc., 1993: 23–44.
    [11] IKRAM M Z, ABED-MERAIM K, and HUA Yingbo. Estimating the parameters of chirp signals: An iterative approach[J]. IEEE Transactions on Signal Processing, 1998, 46(12): 3436–3441. doi: 10.1109/78.735320
    [12] KARABOGA D and BASTURK B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459–471. doi: 10.1007/s10898-007-9149-x
    [13] ZHU Guopu and KWONG S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166–3173. doi: 10.1016/j.amc.2010.08.049
    [14] 王士谦. 基于群智能优化的线性调频信号参数估计[D]. [硕士论文], 吉林大学, 2019.

    WANG Shiqian. Parameter estimation of chirp signal based on group intelligence optimization[D]. [Master dissertation], Jilin University, 2019.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  1606
  • HTML全文浏览量:  518
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-08-01
  • 网络出版日期:  2020-08-24
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回